aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir/src/ty.rs
blob: e505c86e38761be941dc8f884d99a465df6cfe1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//! The type system. We currently use this to infer types for completion, hover
//! information and various assists.

mod autoderef;
pub(crate) mod primitive;
#[cfg(test)]
mod tests;
pub(crate) mod method_resolution;
mod op;
mod lower;
mod infer;

use std::sync::Arc;
use std::{fmt, mem};

use join_to_string::join;

use crate::{Name, AdtDef, type_ref::Mutability};

pub(crate) use lower::{TypableDef, CallableDef, type_for_def, type_for_field};
pub(crate) use infer::{infer, InferenceResult, InferTy};

/// A type. This is based on the `TyKind` enum in rustc (librustc/ty/sty.rs).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Ty {
    /// The primitive boolean type. Written as `bool`.
    Bool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point). Written as `char`.
    Char,

    /// A primitive integer type. For example, `i32`.
    Int(primitive::UncertainIntTy),

    /// A primitive floating-point type. For example, `f64`.
    Float(primitive::UncertainFloatTy),

    /// Structures, enumerations and unions.
    Adt {
        /// The definition of the struct/enum.
        def_id: AdtDef,
        /// The name, for displaying.
        name: Name,
        /// Substitutions for the generic parameters of the type.
        substs: Substs,
    },

    /// The pointee of a string slice. Written as `str`.
    Str,

    /// The pointee of an array slice.  Written as `[T]`.
    Slice(Arc<Ty>),

    // An array with the given length. Written as `[T; n]`.
    Array(Arc<Ty>),

    /// A raw pointer. Written as `*mut T` or `*const T`
    RawPtr(Arc<Ty>, Mutability),

    /// A reference; a pointer with an associated lifetime. Written as
    /// `&'a mut T` or `&'a T`.
    Ref(Arc<Ty>, Mutability),

    /// The anonymous type of a function declaration/definition. Each
    /// function has a unique type, which is output (for a function
    /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
    ///
    /// This includes tuple struct / enum variant constructors as well.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar = foo; // bar: fn() -> i32 {foo}
    /// ```
    FnDef {
        /// The definition of the function / constructor.
        def: CallableDef,
        /// For display
        name: Name,
        /// Parameters and return type
        sig: Arc<FnSig>,
        /// Substitutions for the generic parameters of the type
        substs: Substs,
    },

    /// A pointer to a function.  Written as `fn() -> i32`.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar: fn() -> i32 = foo;
    /// ```
    FnPtr(Arc<FnSig>),

    // rustc has a separate type for each function, which just coerces to the
    // above function pointer type. Once we implement generics, we will probably
    // need this as well.

    // A trait, defined with `dyn Trait`.
    // Dynamic(),

    // The anonymous type of a closure. Used to represent the type of
    // `|a| a`.
    // Closure(DefId, ClosureSubsts<'tcx>),

    // The anonymous type of a generator. Used to represent the type of
    // `|a| yield a`.
    // Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),

    // A type representing the types stored inside a generator.
    // This should only appear in GeneratorInteriors.
    // GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
    /// The never type `!`.
    Never,

    /// A tuple type.  For example, `(i32, bool)`.
    Tuple(Arc<[Ty]>),

    // The projection of an associated type.  For example,
    // `<T as Trait<..>>::N`.pub
    // Projection(ProjectionTy),

    // Opaque (`impl Trait`) type found in a return type.
    // Opaque(DefId, Substs),
    /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
    Param {
        /// The index of the parameter (starting with parameters from the
        /// surrounding impl, then the current function).
        idx: u32,
        /// The name of the parameter, for displaying.
        name: Name,
    },

    /// A type variable used during type checking. Not to be confused with a
    /// type parameter.
    Infer(InferTy),

    /// A placeholder for a type which could not be computed; this is propagated
    /// to avoid useless error messages. Doubles as a placeholder where type
    /// variables are inserted before type checking, since we want to try to
    /// infer a better type here anyway -- for the IDE use case, we want to try
    /// to infer as much as possible even in the presence of type errors.
    Unknown,
}

/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Substs(Arc<[Ty]>);

impl Substs {
    pub fn empty() -> Substs {
        Substs(Arc::new([]))
    }
}

/// A function signature.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FnSig {
    input: Vec<Ty>,
    output: Ty,
}

impl Ty {
    pub fn unit() -> Self {
        Ty::Tuple(Arc::new([]))
    }

    pub fn walk(&self, f: &mut impl FnMut(&Ty)) {
        match self {
            Ty::Slice(t) | Ty::Array(t) => t.walk(f),
            Ty::RawPtr(t, _) => t.walk(f),
            Ty::Ref(t, _) => t.walk(f),
            Ty::Tuple(ts) => {
                for t in ts.iter() {
                    t.walk(f);
                }
            }
            Ty::FnPtr(sig) => {
                for input in &sig.input {
                    input.walk(f);
                }
                sig.output.walk(f);
            }
            Ty::FnDef { substs, sig, .. } => {
                for input in &sig.input {
                    input.walk(f);
                }
                sig.output.walk(f);
                for t in substs.0.iter() {
                    t.walk(f);
                }
            }
            Ty::Adt { substs, .. } => {
                for t in substs.0.iter() {
                    t.walk(f);
                }
            }
            Ty::Bool
            | Ty::Char
            | Ty::Int(_)
            | Ty::Float(_)
            | Ty::Str
            | Ty::Never
            | Ty::Param { .. }
            | Ty::Infer(_)
            | Ty::Unknown => {}
        }
        f(self);
    }

    fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
        match self {
            Ty::Slice(t) | Ty::Array(t) => Arc::make_mut(t).walk_mut(f),
            Ty::RawPtr(t, _) => Arc::make_mut(t).walk_mut(f),
            Ty::Ref(t, _) => Arc::make_mut(t).walk_mut(f),
            Ty::Tuple(ts) => {
                // Without an Arc::make_mut_slice, we can't avoid the clone here:
                let mut v: Vec<_> = ts.iter().cloned().collect();
                for t in &mut v {
                    t.walk_mut(f);
                }
                *ts = v.into();
            }
            Ty::FnPtr(sig) => {
                let sig_mut = Arc::make_mut(sig);
                for input in &mut sig_mut.input {
                    input.walk_mut(f);
                }
                sig_mut.output.walk_mut(f);
            }
            Ty::FnDef { substs, sig, .. } => {
                let sig_mut = Arc::make_mut(sig);
                for input in &mut sig_mut.input {
                    input.walk_mut(f);
                }
                sig_mut.output.walk_mut(f);
                // Without an Arc::make_mut_slice, we can't avoid the clone here:
                let mut v: Vec<_> = substs.0.iter().cloned().collect();
                for t in &mut v {
                    t.walk_mut(f);
                }
                substs.0 = v.into();
            }
            Ty::Adt { substs, .. } => {
                // Without an Arc::make_mut_slice, we can't avoid the clone here:
                let mut v: Vec<_> = substs.0.iter().cloned().collect();
                for t in &mut v {
                    t.walk_mut(f);
                }
                substs.0 = v.into();
            }
            Ty::Bool
            | Ty::Char
            | Ty::Int(_)
            | Ty::Float(_)
            | Ty::Str
            | Ty::Never
            | Ty::Param { .. }
            | Ty::Infer(_)
            | Ty::Unknown => {}
        }
        f(self);
    }

    fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty {
        self.walk_mut(&mut |ty_mut| {
            let ty = mem::replace(ty_mut, Ty::Unknown);
            *ty_mut = f(ty);
        });
        self
    }

    fn builtin_deref(&self) -> Option<Ty> {
        match self {
            Ty::Ref(t, _) => Some(Ty::clone(t)),
            Ty::RawPtr(t, _) => Some(Ty::clone(t)),
            _ => None,
        }
    }

    /// If this is a type with type parameters (an ADT or function), replaces
    /// the `Substs` for these type parameters with the given ones. (So e.g. if
    /// `self` is `Option<_>` and the substs contain `u32`, we'll have
    /// `Option<u32>` afterwards.)
    pub fn apply_substs(self, substs: Substs) -> Ty {
        match self {
            Ty::Adt { def_id, name, .. } => Ty::Adt { def_id, name, substs },
            Ty::FnDef { def, name, sig, .. } => Ty::FnDef { def, name, sig, substs },
            _ => self,
        }
    }

    /// Replaces type parameters in this type using the given `Substs`. (So e.g.
    /// if `self` is `&[T]`, where type parameter T has index 0, and the
    /// `Substs` contain `u32` at index 0, we'll have `&[u32]` afterwards.)
    pub fn subst(self, substs: &Substs) -> Ty {
        self.fold(&mut |ty| match ty {
            Ty::Param { idx, name } => {
                if (idx as usize) < substs.0.len() {
                    substs.0[idx as usize].clone()
                } else {
                    // TODO: does this indicate a bug? i.e. should we always
                    // have substs for all type params? (they might contain the
                    // params themselves again...)
                    Ty::Param { idx, name }
                }
            }
            ty => ty,
        })
    }

    /// Returns the type parameters of this type if it has some (i.e. is an ADT
    /// or function); so if `self` is `Option<u32>`, this returns the `u32`.
    fn substs(&self) -> Option<Substs> {
        match self {
            Ty::Adt { substs, .. } | Ty::FnDef { substs, .. } => Some(substs.clone()),
            _ => None,
        }
    }
}

impl fmt::Display for Ty {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Ty::Bool => write!(f, "bool"),
            Ty::Char => write!(f, "char"),
            Ty::Int(t) => write!(f, "{}", t.ty_to_string()),
            Ty::Float(t) => write!(f, "{}", t.ty_to_string()),
            Ty::Str => write!(f, "str"),
            Ty::Slice(t) | Ty::Array(t) => write!(f, "[{}]", t),
            Ty::RawPtr(t, m) => write!(f, "*{}{}", m.as_keyword_for_ptr(), t),
            Ty::Ref(t, m) => write!(f, "&{}{}", m.as_keyword_for_ref(), t),
            Ty::Never => write!(f, "!"),
            Ty::Tuple(ts) => {
                if ts.len() == 1 {
                    write!(f, "({},)", ts[0])
                } else {
                    join(ts.iter()).surround_with("(", ")").separator(", ").to_fmt(f)
                }
            }
            Ty::FnPtr(sig) => {
                join(sig.input.iter()).surround_with("fn(", ")").separator(", ").to_fmt(f)?;
                write!(f, " -> {}", sig.output)
            }
            Ty::FnDef { def, name, substs, sig, .. } => {
                match def {
                    CallableDef::Function(_) => write!(f, "fn {}", name)?,
                    CallableDef::Struct(_) | CallableDef::EnumVariant(_) => write!(f, "{}", name)?,
                }
                if substs.0.len() > 0 {
                    join(substs.0.iter()).surround_with("<", ">").separator(", ").to_fmt(f)?;
                }
                join(sig.input.iter()).surround_with("(", ")").separator(", ").to_fmt(f)?;
                write!(f, " -> {}", sig.output)
            }
            Ty::Adt { name, substs, .. } => {
                write!(f, "{}", name)?;
                if substs.0.len() > 0 {
                    join(substs.0.iter()).surround_with("<", ">").separator(", ").to_fmt(f)?;
                }
                Ok(())
            }
            Ty::Param { name, .. } => write!(f, "{}", name),
            Ty::Unknown => write!(f, "[unknown]"),
            Ty::Infer(..) => write!(f, "_"),
        }
    }
}