1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
mod primitive;
#[cfg(test)]
mod tests;
use std::sync::Arc;
use std::fmt;
use log;
use rustc_hash::{FxHashMap};
use ra_db::{LocalSyntaxPtr, Cancelable};
use ra_syntax::{
SmolStr,
ast::{self, AstNode, LoopBodyOwner, ArgListOwner, PrefixOp},
SyntaxNodeRef
};
use crate::{
Def, DefId, FnScopes, Module, Function, Struct, Enum, Path,
db::HirDatabase,
adt::VariantData,
type_ref::{TypeRef, Mutability},
};
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum Ty {
/// The primitive boolean type. Written as `bool`.
Bool,
/// The primitive character type; holds a Unicode scalar value
/// (a non-surrogate code point). Written as `char`.
Char,
/// A primitive signed integer type. For example, `i32`.
Int(primitive::IntTy),
/// A primitive unsigned integer type. For example, `u32`.
Uint(primitive::UintTy),
/// A primitive floating-point type. For example, `f64`.
Float(primitive::FloatTy),
/// Structures, enumerations and unions.
Adt {
/// The DefId of the struct/enum.
def_id: DefId,
/// The name, for displaying.
name: SmolStr,
// later we'll need generic substitutions here
},
/// The pointee of a string slice. Written as `str`.
Str,
// An array with the given length. Written as `[T; n]`.
// Array(Ty, ty::Const),
/// The pointee of an array slice. Written as `[T]`.
Slice(TyRef),
/// A raw pointer. Written as `*mut T` or `*const T`
RawPtr(TyRef, Mutability),
/// A reference; a pointer with an associated lifetime. Written as
/// `&'a mut T` or `&'a T`.
Ref(TyRef, Mutability),
/// A pointer to a function. Written as `fn() -> i32`.
///
/// For example the type of `bar` here:
///
/// ```rust
/// fn foo() -> i32 { 1 }
/// let bar: fn() -> i32 = foo;
/// ```
FnPtr(Arc<FnSig>),
// A trait, defined with `dyn trait`.
// Dynamic(),
/// The anonymous type of a closure. Used to represent the type of
/// `|a| a`.
// Closure(DefId, ClosureSubsts<'tcx>),
/// The anonymous type of a generator. Used to represent the type of
/// `|a| yield a`.
// Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),
/// A type representin the types stored inside a generator.
/// This should only appear in GeneratorInteriors.
// GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
/// The never type `!`
Never,
/// A tuple type. For example, `(i32, bool)`.
Tuple(Vec<Ty>),
// The projection of an associated type. For example,
// `<T as Trait<..>>::N`.
// Projection(ProjectionTy),
// Opaque (`impl Trait`) type found in a return type.
// The `DefId` comes either from
// * the `impl Trait` ast::Ty node,
// * or the `existential type` declaration
// The substitutions are for the generics of the function in question.
// Opaque(DefId, Substs),
// A type parameter; for example, `T` in `fn f<T>(x: T) {}
// Param(ParamTy),
// A placeholder type - universally quantified higher-ranked type.
// Placeholder(ty::PlaceholderType),
// A type variable used during type checking.
// Infer(InferTy),
/// A placeholder for a type which could not be computed; this is
/// propagated to avoid useless error messages.
Unknown,
}
type TyRef = Arc<Ty>;
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct FnSig {
input: Vec<Ty>,
output: Ty,
}
impl Ty {
pub(crate) fn from_hir(
db: &impl HirDatabase,
module: &Module,
type_ref: &TypeRef,
) -> Cancelable<Self> {
Ok(match type_ref {
TypeRef::Never => Ty::Never,
TypeRef::Tuple(inner) => {
let inner_tys = inner
.iter()
.map(|tr| Ty::from_hir(db, module, tr))
.collect::<Cancelable<_>>()?;
Ty::Tuple(inner_tys)
}
TypeRef::Path(path) => Ty::from_hir_path(db, module, path)?,
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(db, module, inner)?;
Ty::RawPtr(Arc::new(inner_ty), *mutability)
}
TypeRef::Array(_inner) => Ty::Unknown, // TODO
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(db, module, inner)?;
Ty::Slice(Arc::new(inner_ty))
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(db, module, inner)?;
Ty::Ref(Arc::new(inner_ty), *mutability)
}
TypeRef::Placeholder => Ty::Unknown, // TODO
TypeRef::Fn(params) => {
let mut inner_tys = params
.iter()
.map(|tr| Ty::from_hir(db, module, tr))
.collect::<Cancelable<Vec<_>>>()?;
let return_ty = inner_tys
.pop()
.expect("TypeRef::Fn should always have at least return type");
let sig = FnSig {
input: inner_tys,
output: return_ty,
};
Ty::FnPtr(Arc::new(sig))
}
TypeRef::Error => Ty::Unknown,
})
}
pub(crate) fn from_hir_path(
db: &impl HirDatabase,
module: &Module,
path: &Path,
) -> Cancelable<Self> {
if path.is_ident() {
let name = &path.segments[0];
if let Some(int_ty) = primitive::IntTy::from_string(&name) {
return Ok(Ty::Int(int_ty));
} else if let Some(uint_ty) = primitive::UintTy::from_string(&name) {
return Ok(Ty::Uint(uint_ty));
} else if let Some(float_ty) = primitive::FloatTy::from_string(&name) {
return Ok(Ty::Float(float_ty));
}
}
// Resolve in module (in type namespace)
let resolved = if let Some(r) = module.resolve_path(db, path)?.take_types() {
r
} else {
return Ok(Ty::Unknown);
};
let ty = db.type_for_def(resolved)?;
Ok(ty)
}
// TODO: These should not be necessary long-term, since everything will work on HIR
pub(crate) fn from_ast_opt(
db: &impl HirDatabase,
module: &Module,
node: Option<ast::TypeRef>,
) -> Cancelable<Self> {
node.map(|n| Ty::from_ast(db, module, n))
.unwrap_or(Ok(Ty::Unknown))
}
pub(crate) fn from_ast(
db: &impl HirDatabase,
module: &Module,
node: ast::TypeRef,
) -> Cancelable<Self> {
Ty::from_hir(db, module, &TypeRef::from_ast(node))
}
pub fn unit() -> Self {
Ty::Tuple(Vec::new())
}
}
impl fmt::Display for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Ty::Bool => write!(f, "bool"),
Ty::Char => write!(f, "char"),
Ty::Int(t) => write!(f, "{}", t.ty_to_string()),
Ty::Uint(t) => write!(f, "{}", t.ty_to_string()),
Ty::Float(t) => write!(f, "{}", t.ty_to_string()),
Ty::Str => write!(f, "str"),
Ty::Slice(t) => write!(f, "[{}]", t),
Ty::RawPtr(t, m) => write!(f, "*{}{}", m.as_keyword_for_ptr(), t),
Ty::Ref(t, m) => write!(f, "&{}{}", m.as_keyword_for_ref(), t),
Ty::Never => write!(f, "!"),
Ty::Tuple(ts) => {
write!(f, "(")?;
for t in ts {
write!(f, "{},", t)?;
}
write!(f, ")")
}
Ty::FnPtr(sig) => {
write!(f, "fn(")?;
for t in &sig.input {
write!(f, "{},", t)?;
}
write!(f, ") -> {}", sig.output)
}
Ty::Adt { name, .. } => write!(f, "{}", name),
Ty::Unknown => write!(f, "[unknown]"),
}
}
}
pub fn type_for_fn(db: &impl HirDatabase, f: Function) -> Cancelable<Ty> {
let syntax = f.syntax(db);
let module = f.module(db)?;
let node = syntax.borrowed();
// TODO we ignore type parameters for now
let input = node
.param_list()
.map(|pl| {
pl.params()
.map(|p| Ty::from_ast_opt(db, &module, p.type_ref()))
.collect()
})
.unwrap_or_else(|| Ok(Vec::new()))?;
let output = Ty::from_ast_opt(db, &module, node.ret_type().and_then(|rt| rt.type_ref()))?;
let sig = FnSig { input, output };
Ok(Ty::FnPtr(Arc::new(sig)))
}
pub fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Cancelable<Ty> {
Ok(Ty::Adt {
def_id: s.def_id(),
name: s
.name(db)?
.unwrap_or_else(|| SmolStr::new("[unnamed struct]")),
})
}
pub fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Cancelable<Ty> {
Ok(Ty::Adt {
def_id: s.def_id(),
name: s
.name(db)?
.unwrap_or_else(|| SmolStr::new("[unnamed enum]")),
})
}
pub fn type_for_def(db: &impl HirDatabase, def_id: DefId) -> Cancelable<Ty> {
let def = def_id.resolve(db)?;
match def {
Def::Module(..) => {
log::debug!("trying to get type for module {:?}", def_id);
Ok(Ty::Unknown)
}
Def::Function(f) => type_for_fn(db, f),
Def::Struct(s) => type_for_struct(db, s),
Def::Enum(e) => type_for_enum(db, e),
Def::Item => {
log::debug!("trying to get type for item of unknown type {:?}", def_id);
Ok(Ty::Unknown)
}
}
}
pub(super) fn type_for_field(
db: &impl HirDatabase,
def_id: DefId,
field: SmolStr,
) -> Cancelable<Ty> {
let def = def_id.resolve(db)?;
let variant_data = match def {
Def::Struct(s) => {
let variant_data = s.variant_data(db)?;
variant_data
}
// TODO: unions
// TODO: enum variants
_ => panic!(
"trying to get type for field in non-struct/variant {:?}",
def_id
),
};
let module = def_id.module(db)?;
let type_ref = if let Some(tr) = variant_data.get_field_type_ref(&field) {
tr
} else {
return Ok(Ty::Unknown);
};
Ty::from_hir(db, &module, &type_ref)
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InferenceResult {
type_of: FxHashMap<LocalSyntaxPtr, Ty>,
}
impl InferenceResult {
pub fn type_of_node(&self, node: SyntaxNodeRef) -> Option<Ty> {
self.type_of.get(&LocalSyntaxPtr::new(node)).cloned()
}
}
#[derive(Clone, Debug)]
pub struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
scopes: Arc<FnScopes>,
module: Module,
// TODO unification tables...
type_of: FxHashMap<LocalSyntaxPtr, Ty>,
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
fn new(db: &'a D, scopes: Arc<FnScopes>, module: Module) -> Self {
InferenceContext {
type_of: FxHashMap::default(),
db,
scopes,
module,
}
}
fn write_ty(&mut self, node: SyntaxNodeRef, ty: Ty) {
self.type_of.insert(LocalSyntaxPtr::new(node), ty);
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> Option<Ty> {
if *ty1 == Ty::Unknown {
return Some(ty2.clone());
}
if *ty2 == Ty::Unknown {
return Some(ty1.clone());
}
if ty1 == ty2 {
return Some(ty1.clone());
}
// TODO implement actual unification
return None;
}
fn unify_with_coercion(&mut self, ty1: &Ty, ty2: &Ty) -> Option<Ty> {
// TODO implement coercion
self.unify(ty1, ty2)
}
fn infer_path_expr(&mut self, expr: ast::PathExpr) -> Cancelable<Option<Ty>> {
let ast_path = ctry!(expr.path());
let path = ctry!(Path::from_ast(ast_path));
if path.is_ident() {
// resolve locally
let name = ctry!(ast_path.segment().and_then(|s| s.name_ref()));
if let Some(scope_entry) = self.scopes.resolve_local_name(name) {
let ty = ctry!(self.type_of.get(&scope_entry.ptr()));
return Ok(Some(ty.clone()));
};
};
// resolve in module
let resolved = ctry!(self.module.resolve_path(self.db, &path)?.take_values());
let ty = self.db.type_for_def(resolved)?;
// TODO we will need to add type variables for type parameters etc. here
Ok(Some(ty))
}
fn resolve_variant(
&self,
path: Option<ast::Path>,
) -> Cancelable<(Ty, Option<Arc<VariantData>>)> {
let path = if let Some(path) = path.and_then(Path::from_ast) {
path
} else {
return Ok((Ty::Unknown, None));
};
let def_id = if let Some(def_id) = self.module.resolve_path(self.db, &path)?.take_types() {
def_id
} else {
return Ok((Ty::Unknown, None));
};
Ok(match def_id.resolve(self.db)? {
Def::Struct(s) => {
let struct_data = self.db.struct_data(def_id)?;
let ty = type_for_struct(self.db, s)?;
(ty, Some(struct_data.variant_data().clone()))
}
_ => (Ty::Unknown, None),
})
}
fn infer_expr_opt(&mut self, expr: Option<ast::Expr>) -> Cancelable<Ty> {
if let Some(e) = expr {
self.infer_expr(e)
} else {
Ok(Ty::Unknown)
}
}
fn infer_expr(&mut self, expr: ast::Expr) -> Cancelable<Ty> {
let ty = match expr {
ast::Expr::IfExpr(e) => {
if let Some(condition) = e.condition() {
// TODO if no pat, this should be bool
self.infer_expr_opt(condition.expr())?;
// TODO write type for pat
};
let if_ty = self.infer_block_opt(e.then_branch())?;
let else_ty = self.infer_block_opt(e.else_branch())?;
if let Some(ty) = self.unify(&if_ty, &else_ty) {
ty
} else {
// TODO report diagnostic
Ty::Unknown
}
}
ast::Expr::BlockExpr(e) => self.infer_block_opt(e.block())?,
ast::Expr::LoopExpr(e) => {
self.infer_block_opt(e.loop_body())?;
// TODO never, or the type of the break param
Ty::Unknown
}
ast::Expr::WhileExpr(e) => {
if let Some(condition) = e.condition() {
// TODO if no pat, this should be bool
self.infer_expr_opt(condition.expr())?;
// TODO write type for pat
};
self.infer_block_opt(e.loop_body())?;
// TODO always unit?
Ty::Unknown
}
ast::Expr::ForExpr(e) => {
let _iterable_ty = self.infer_expr_opt(e.iterable());
if let Some(_pat) = e.pat() {
// TODO write type for pat
}
self.infer_block_opt(e.loop_body())?;
// TODO always unit?
Ty::Unknown
}
ast::Expr::LambdaExpr(e) => {
let _body_ty = self.infer_expr_opt(e.body())?;
Ty::Unknown
}
ast::Expr::CallExpr(e) => {
let callee_ty = self.infer_expr_opt(e.expr())?;
if let Some(arg_list) = e.arg_list() {
for arg in arg_list.args() {
// TODO unify / expect argument type
self.infer_expr(arg)?;
}
}
match callee_ty {
Ty::FnPtr(sig) => sig.output.clone(),
_ => {
// not callable
// TODO report an error?
Ty::Unknown
}
}
}
ast::Expr::MethodCallExpr(e) => {
let _receiver_ty = self.infer_expr_opt(e.expr())?;
if let Some(arg_list) = e.arg_list() {
for arg in arg_list.args() {
// TODO unify / expect argument type
self.infer_expr(arg)?;
}
}
Ty::Unknown
}
ast::Expr::MatchExpr(e) => {
let _ty = self.infer_expr_opt(e.expr())?;
if let Some(match_arm_list) = e.match_arm_list() {
for arm in match_arm_list.arms() {
// TODO type the bindings in pat
// TODO type the guard
let _ty = self.infer_expr_opt(arm.expr())?;
}
// TODO unify all the match arm types
Ty::Unknown
} else {
Ty::Unknown
}
}
ast::Expr::TupleExpr(_e) => Ty::Unknown,
ast::Expr::ArrayExpr(_e) => Ty::Unknown,
ast::Expr::PathExpr(e) => self.infer_path_expr(e)?.unwrap_or(Ty::Unknown),
ast::Expr::ContinueExpr(_e) => Ty::Never,
ast::Expr::BreakExpr(_e) => Ty::Never,
ast::Expr::ParenExpr(e) => self.infer_expr_opt(e.expr())?,
ast::Expr::Label(_e) => Ty::Unknown,
ast::Expr::ReturnExpr(e) => {
self.infer_expr_opt(e.expr())?;
Ty::Never
}
ast::Expr::MatchArmList(_) | ast::Expr::MatchArm(_) | ast::Expr::MatchGuard(_) => {
// Can this even occur outside of a match expression?
Ty::Unknown
}
ast::Expr::StructLit(e) => {
let (ty, _variant_data) = self.resolve_variant(e.path())?;
if let Some(nfl) = e.named_field_list() {
for field in nfl.fields() {
// TODO unify with / expect field type
self.infer_expr_opt(field.expr())?;
}
}
ty
}
ast::Expr::NamedFieldList(_) | ast::Expr::NamedField(_) => {
// Can this even occur outside of a struct literal?
Ty::Unknown
}
ast::Expr::IndexExpr(_e) => Ty::Unknown,
ast::Expr::FieldExpr(e) => {
let receiver_ty = self.infer_expr_opt(e.expr())?;
if let Some(nr) = e.name_ref() {
let text = nr.text();
match receiver_ty {
Ty::Tuple(fields) => {
let i = text.parse::<usize>().ok();
i.and_then(|i| fields.get(i).cloned())
.unwrap_or(Ty::Unknown)
}
Ty::Adt { def_id, .. } => self.db.type_for_field(def_id, text)?,
_ => Ty::Unknown,
}
} else {
Ty::Unknown
}
}
ast::Expr::TryExpr(e) => {
let _inner_ty = self.infer_expr_opt(e.expr())?;
Ty::Unknown
}
ast::Expr::CastExpr(e) => {
let _inner_ty = self.infer_expr_opt(e.expr())?;
let cast_ty = Ty::from_ast_opt(self.db, &self.module, e.type_ref())?;
// TODO do the coercion...
cast_ty
}
ast::Expr::RefExpr(e) => {
let inner_ty = self.infer_expr_opt(e.expr())?;
let m = Mutability::from_mutable(e.is_mut());
// TODO reference coercions etc.
Ty::Ref(Arc::new(inner_ty), m)
}
ast::Expr::PrefixExpr(e) => {
let inner_ty = self.infer_expr_opt(e.expr())?;
match e.op() {
Some(PrefixOp::Deref) => {
match inner_ty {
// builtin deref:
Ty::Ref(ref_inner, _) => (*ref_inner).clone(),
Ty::RawPtr(ptr_inner, _) => (*ptr_inner).clone(),
// TODO Deref::deref
_ => Ty::Unknown,
}
}
_ => Ty::Unknown,
}
}
ast::Expr::RangeExpr(_e) => Ty::Unknown,
ast::Expr::BinExpr(_e) => Ty::Unknown,
ast::Expr::Literal(_e) => Ty::Unknown,
};
self.write_ty(expr.syntax(), ty.clone());
Ok(ty)
}
fn infer_block_opt(&mut self, node: Option<ast::Block>) -> Cancelable<Ty> {
if let Some(b) = node {
self.infer_block(b)
} else {
Ok(Ty::Unknown)
}
}
fn infer_block(&mut self, node: ast::Block) -> Cancelable<Ty> {
for stmt in node.statements() {
match stmt {
ast::Stmt::LetStmt(stmt) => {
let decl_ty = Ty::from_ast_opt(self.db, &self.module, stmt.type_ref())?;
let ty = if let Some(expr) = stmt.initializer() {
// TODO pass expectation
let expr_ty = self.infer_expr(expr)?;
self.unify_with_coercion(&expr_ty, &decl_ty)
.unwrap_or(decl_ty)
} else {
decl_ty
};
if let Some(pat) = stmt.pat() {
self.write_ty(pat.syntax(), ty);
};
}
ast::Stmt::ExprStmt(expr_stmt) => {
self.infer_expr_opt(expr_stmt.expr())?;
}
}
}
let ty = if let Some(expr) = node.expr() {
self.infer_expr(expr)?
} else {
Ty::unit()
};
self.write_ty(node.syntax(), ty.clone());
Ok(ty)
}
}
pub fn infer(db: &impl HirDatabase, function: Function) -> Cancelable<InferenceResult> {
let scopes = function.scopes(db);
let module = function.module(db)?;
let mut ctx = InferenceContext::new(db, scopes, module);
let syntax = function.syntax(db);
let node = syntax.borrowed();
if let Some(param_list) = node.param_list() {
for param in param_list.params() {
let pat = if let Some(pat) = param.pat() {
pat
} else {
continue;
};
if let Some(type_ref) = param.type_ref() {
let ty = Ty::from_ast(db, &ctx.module, type_ref)?;
ctx.type_of.insert(LocalSyntaxPtr::new(pat.syntax()), ty);
} else {
// TODO self param
ctx.type_of
.insert(LocalSyntaxPtr::new(pat.syntax()), Ty::Unknown);
};
}
}
// TODO get Ty for node.ret_type() and pass that to infer_block as expectation
// (see Expectation in rustc_typeck)
if let Some(block) = node.body() {
ctx.infer_block(block)?;
}
// TODO 'resolve' the types: replace inference variables by their inferred results
Ok(InferenceResult {
type_of: ctx.type_of,
})
}
|