aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir/src/ty.rs
blob: 6bdfdd7b44f0c7caedc625210d2ab154bc641781 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
//! The type system. We currently use this to infer types for completion.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! The central struct here is `Ty`, which represents a type. During inference,
//! it can contain type 'variables' which represent currently unknown types; as
//! we walk through the expressions, we might determine that certain variables
//! need to be equal to each other, or to certain types. To record this, we use
//! the union-find implementation from the `ena` crate, which is extracted from
//! rustc.

mod primitive;
#[cfg(test)]
mod tests;

use std::ops::Index;
use std::sync::Arc;
use std::{fmt, mem};

use log;
use rustc_hash::FxHashMap;
use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError};

use ra_db::Cancelable;

use crate::{
    Def, DefId, Module, Function, Struct, Enum, Path, Name, ImplBlock,
    FnSignature, FnScopes,
    db::HirDatabase,
    type_ref::{TypeRef, Mutability},
    name::KnownName,
    expr::{Body, Expr, ExprId, PatId, UnaryOp, BinaryOp, Statement},
};

/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(u32);

impl UnifyKey for TypeVarId {
    type Value = TypeVarValue;

    fn index(&self) -> u32 {
        self.0
    }

    fn from_index(i: u32) -> Self {
        TypeVarId(i)
    }

    fn tag() -> &'static str {
        "TypeVarId"
    }
}

/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
    Known(Ty),
    Unknown,
}

impl TypeVarValue {
    fn known(&self) -> Option<&Ty> {
        match self {
            TypeVarValue::Known(ty) => Some(ty),
            TypeVarValue::Unknown => None,
        }
    }
}

impl UnifyValue for TypeVarValue {
    type Error = NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
        match (value1, value2) {
            // We should never equate two type variables, both of which have
            // known types. Instead, we recursively equate those types.
            (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
                "equating two type variables, both of which have known types: {:?} and {:?}",
                t1, t2
            ),

            // If one side is known, prefer that one.
            (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
            (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),

            (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
        }
    }
}

/// The kinds of placeholders we need during type inference. Currently, we only
/// have type variables; in the future, we will probably also need int and float
/// variables, for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
    TypeVar(TypeVarId),
}

/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
    ty: Ty,
    // TODO: In some cases, we need to be aware whether the expectation is that
    // the type match exactly what we passed, or whether it just needs to be
    // coercible to the expected type. See Expectation::rvalue_hint in rustc.
}

impl Expectation {
    /// The expectation that the type of the expression needs to equal the given
    /// type.
    fn has_type(ty: Ty) -> Self {
        Expectation { ty }
    }

    /// This expresses no expectation on the type.
    fn none() -> Self {
        Expectation { ty: Ty::Unknown }
    }
}

/// A type. This is based on the `TyKind` enum in rustc (librustc/ty/sty.rs).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum Ty {
    /// The primitive boolean type. Written as `bool`.
    Bool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point).  Written as `char`.
    Char,

    /// A primitive signed integer type. For example, `i32`.
    Int(primitive::IntTy),

    /// A primitive unsigned integer type. For example, `u32`.
    Uint(primitive::UintTy),

    /// A primitive floating-point type. For example, `f64`.
    Float(primitive::FloatTy),

    /// Structures, enumerations and unions.
    Adt {
        /// The DefId of the struct/enum.
        def_id: DefId,
        /// The name, for displaying.
        name: Name,
        // later we'll need generic substitutions here
    },

    /// The pointee of a string slice. Written as `str`.
    Str,

    // An array with the given length. Written as `[T; n]`.
    // Array(Ty, ty::Const),
    /// The pointee of an array slice.  Written as `[T]`.
    Slice(Arc<Ty>),

    /// A raw pointer. Written as `*mut T` or `*const T`
    RawPtr(Arc<Ty>, Mutability),

    /// A reference; a pointer with an associated lifetime. Written as
    /// `&'a mut T` or `&'a T`.
    Ref(Arc<Ty>, Mutability),

    /// A pointer to a function.  Written as `fn() -> i32`.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar: fn() -> i32 = foo;
    /// ```
    FnPtr(Arc<FnSig>),

    // rustc has a separate type for each function, which just coerces to the
    // above function pointer type. Once we implement generics, we will probably
    // need this as well.

    // A trait, defined with `dyn trait`.
    // Dynamic(),
    // The anonymous type of a closure. Used to represent the type of
    // `|a| a`.
    // Closure(DefId, ClosureSubsts<'tcx>),

    // The anonymous type of a generator. Used to represent the type of
    // `|a| yield a`.
    // Generator(DefId, GeneratorSubsts<'tcx>, hir::GeneratorMovability),

    // A type representin the types stored inside a generator.
    // This should only appear in GeneratorInteriors.
    // GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),
    /// The never type `!`.
    Never,

    /// A tuple type.  For example, `(i32, bool)`.
    Tuple(Arc<[Ty]>),

    // The projection of an associated type.  For example,
    // `<T as Trait<..>>::N`.pub
    // Projection(ProjectionTy),

    // Opaque (`impl Trait`) type found in a return type.
    // Opaque(DefId, Substs),

    // A type parameter; for example, `T` in `fn f<T>(x: T) {}
    // Param(ParamTy),
    /// A type variable used during type checking. Not to be confused with a
    /// type parameter.
    Infer(InferTy),

    /// A placeholder for a type which could not be computed; this is propagated
    /// to avoid useless error messages. Doubles as a placeholder where type
    /// variables are inserted before type checking, since we want to try to
    /// infer a better type here anyway -- for the IDE use case, we want to try
    /// to infer as much as possible even in the presence of type errors.
    Unknown,
}

/// A function signature.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct FnSig {
    input: Vec<Ty>,
    output: Ty,
}

impl Ty {
    pub(crate) fn from_hir(
        db: &impl HirDatabase,
        module: &Module,
        impl_block: Option<&ImplBlock>,
        type_ref: &TypeRef,
    ) -> Cancelable<Self> {
        Ok(match type_ref {
            TypeRef::Never => Ty::Never,
            TypeRef::Tuple(inner) => {
                let inner_tys = inner
                    .iter()
                    .map(|tr| Ty::from_hir(db, module, impl_block, tr))
                    .collect::<Cancelable<Vec<_>>>()?;
                Ty::Tuple(inner_tys.into())
            }
            TypeRef::Path(path) => Ty::from_hir_path(db, module, impl_block, path)?,
            TypeRef::RawPtr(inner, mutability) => {
                let inner_ty = Ty::from_hir(db, module, impl_block, inner)?;
                Ty::RawPtr(Arc::new(inner_ty), *mutability)
            }
            TypeRef::Array(_inner) => Ty::Unknown, // TODO
            TypeRef::Slice(inner) => {
                let inner_ty = Ty::from_hir(db, module, impl_block, inner)?;
                Ty::Slice(Arc::new(inner_ty))
            }
            TypeRef::Reference(inner, mutability) => {
                let inner_ty = Ty::from_hir(db, module, impl_block, inner)?;
                Ty::Ref(Arc::new(inner_ty), *mutability)
            }
            TypeRef::Placeholder => Ty::Unknown,
            TypeRef::Fn(params) => {
                let mut inner_tys = params
                    .iter()
                    .map(|tr| Ty::from_hir(db, module, impl_block, tr))
                    .collect::<Cancelable<Vec<_>>>()?;
                let return_ty = inner_tys
                    .pop()
                    .expect("TypeRef::Fn should always have at least return type");
                let sig = FnSig {
                    input: inner_tys,
                    output: return_ty,
                };
                Ty::FnPtr(Arc::new(sig))
            }
            TypeRef::Error => Ty::Unknown,
        })
    }

    pub(crate) fn from_hir_opt(
        db: &impl HirDatabase,
        module: &Module,
        impl_block: Option<&ImplBlock>,
        type_ref: Option<&TypeRef>,
    ) -> Cancelable<Self> {
        type_ref
            .map(|t| Ty::from_hir(db, module, impl_block, t))
            .unwrap_or(Ok(Ty::Unknown))
    }

    pub(crate) fn from_hir_path(
        db: &impl HirDatabase,
        module: &Module,
        impl_block: Option<&ImplBlock>,
        path: &Path,
    ) -> Cancelable<Self> {
        if let Some(name) = path.as_ident() {
            if let Some(int_ty) = primitive::IntTy::from_name(name) {
                return Ok(Ty::Int(int_ty));
            } else if let Some(uint_ty) = primitive::UintTy::from_name(name) {
                return Ok(Ty::Uint(uint_ty));
            } else if let Some(float_ty) = primitive::FloatTy::from_name(name) {
                return Ok(Ty::Float(float_ty));
            } else if name.as_known_name() == Some(KnownName::SelfType) {
                return Ty::from_hir_opt(db, module, None, impl_block.map(|i| i.target_type()));
            }
        }

        // Resolve in module (in type namespace)
        let resolved = if let Some(r) = module.resolve_path(db, path)?.take_types() {
            r
        } else {
            return Ok(Ty::Unknown);
        };
        let ty = db.type_for_def(resolved)?;
        Ok(ty)
    }

    pub fn unit() -> Self {
        Ty::Tuple(Arc::new([]))
    }

    fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
        f(self);
        match self {
            Ty::Slice(t) => Arc::make_mut(t).walk_mut(f),
            Ty::RawPtr(t, _) => Arc::make_mut(t).walk_mut(f),
            Ty::Ref(t, _) => Arc::make_mut(t).walk_mut(f),
            Ty::Tuple(ts) => {
                // Without an Arc::make_mut_slice, we can't avoid the clone here:
                let mut v: Vec<_> = ts.iter().cloned().collect();
                for t in &mut v {
                    t.walk_mut(f);
                }
                *ts = v.into();
            }
            Ty::FnPtr(sig) => {
                let sig_mut = Arc::make_mut(sig);
                for input in &mut sig_mut.input {
                    input.walk_mut(f);
                }
                sig_mut.output.walk_mut(f);
            }
            Ty::Adt { .. } => {} // need to walk type parameters later
            _ => {}
        }
    }

    fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Ty {
        self.walk_mut(&mut |ty_mut| {
            let ty = mem::replace(ty_mut, Ty::Unknown);
            *ty_mut = f(ty);
        });
        self
    }
}

impl fmt::Display for Ty {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Ty::Bool => write!(f, "bool"),
            Ty::Char => write!(f, "char"),
            Ty::Int(t) => write!(f, "{}", t.ty_to_string()),
            Ty::Uint(t) => write!(f, "{}", t.ty_to_string()),
            Ty::Float(t) => write!(f, "{}", t.ty_to_string()),
            Ty::Str => write!(f, "str"),
            Ty::Slice(t) => write!(f, "[{}]", t),
            Ty::RawPtr(t, m) => write!(f, "*{}{}", m.as_keyword_for_ptr(), t),
            Ty::Ref(t, m) => write!(f, "&{}{}", m.as_keyword_for_ref(), t),
            Ty::Never => write!(f, "!"),
            Ty::Tuple(ts) => {
                write!(f, "(")?;
                for t in ts.iter() {
                    write!(f, "{},", t)?;
                }
                write!(f, ")")
            }
            Ty::FnPtr(sig) => {
                write!(f, "fn(")?;
                for t in &sig.input {
                    write!(f, "{},", t)?;
                }
                write!(f, ") -> {}", sig.output)
            }
            Ty::Adt { name, .. } => write!(f, "{}", name),
            Ty::Unknown => write!(f, "[unknown]"),
            Ty::Infer(..) => write!(f, "_"),
        }
    }
}

// Functions returning declared types for items

/// Compute the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &impl HirDatabase, f: Function) -> Cancelable<Ty> {
    let signature = f.signature(db);
    let module = f.module(db)?;
    let impl_block = f.impl_block(db)?;
    // TODO we ignore type parameters for now
    let input = signature
        .args()
        .iter()
        .map(|tr| Ty::from_hir(db, &module, impl_block.as_ref(), tr))
        .collect::<Cancelable<Vec<_>>>()?;
    let output = Ty::from_hir(db, &module, impl_block.as_ref(), signature.ret_type())?;
    let sig = FnSig { input, output };
    Ok(Ty::FnPtr(Arc::new(sig)))
}

fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Cancelable<Ty> {
    Ok(Ty::Adt {
        def_id: s.def_id(),
        name: s.name(db)?.unwrap_or_else(Name::missing),
    })
}

pub fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Cancelable<Ty> {
    Ok(Ty::Adt {
        def_id: s.def_id(),
        name: s.name(db)?.unwrap_or_else(Name::missing),
    })
}

pub(super) fn type_for_def(db: &impl HirDatabase, def_id: DefId) -> Cancelable<Ty> {
    let def = def_id.resolve(db)?;
    match def {
        Def::Module(..) => {
            log::debug!("trying to get type for module {:?}", def_id);
            Ok(Ty::Unknown)
        }
        Def::Function(f) => type_for_fn(db, f),
        Def::Struct(s) => type_for_struct(db, s),
        Def::Enum(e) => type_for_enum(db, e),
        Def::Item => {
            log::debug!("trying to get type for item of unknown type {:?}", def_id);
            Ok(Ty::Unknown)
        }
    }
}

pub(super) fn type_for_field(db: &impl HirDatabase, def_id: DefId, field: Name) -> Cancelable<Ty> {
    let def = def_id.resolve(db)?;
    let variant_data = match def {
        Def::Struct(s) => {
            let variant_data = s.variant_data(db)?;
            variant_data
        }
        // TODO: unions
        // TODO: enum variants
        _ => panic!(
            "trying to get type for field in non-struct/variant {:?}",
            def_id
        ),
    };
    let module = def_id.module(db)?;
    let impl_block = def_id.impl_block(db)?;
    let type_ref = if let Some(tr) = variant_data.get_field_type_ref(&field) {
        tr
    } else {
        return Ok(Ty::Unknown);
    };
    Ty::from_hir(db, &module, impl_block.as_ref(), &type_ref)
}

/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InferenceResult {
    type_of_expr: FxHashMap<ExprId, Ty>,
    type_of_pat: FxHashMap<PatId, Ty>,
}

impl Index<ExprId> for InferenceResult {
    type Output = Ty;

    fn index(&self, expr: ExprId) -> &Ty {
        self.type_of_expr.get(&expr).unwrap_or(&Ty::Unknown)
    }
}

impl Index<PatId> for InferenceResult {
    type Output = Ty;

    fn index(&self, pat: PatId) -> &Ty {
        self.type_of_pat.get(&pat).unwrap_or(&Ty::Unknown)
    }
}

/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
    db: &'a D,
    body: Arc<Body>,
    scopes: Arc<FnScopes>,
    module: Module,
    impl_block: Option<ImplBlock>,
    var_unification_table: InPlaceUnificationTable<TypeVarId>,
    type_of_expr: FxHashMap<ExprId, Ty>,
    type_of_pat: FxHashMap<PatId, Ty>,
    /// The return type of the function being inferred.
    return_ty: Ty,
}

// helper function that determines whether a binary operator
// always returns a boolean
fn is_boolean_operator(op: BinaryOp) -> bool {
    match op {
        BinaryOp::BooleanOr
        | BinaryOp::BooleanAnd
        | BinaryOp::EqualityTest
        | BinaryOp::LesserEqualTest
        | BinaryOp::GreaterEqualTest
        | BinaryOp::LesserTest
        | BinaryOp::GreaterTest => true,
    }
}

impl<'a, D: HirDatabase> InferenceContext<'a, D> {
    fn new(
        db: &'a D,
        body: Arc<Body>,
        scopes: Arc<FnScopes>,
        module: Module,
        impl_block: Option<ImplBlock>,
    ) -> Self {
        InferenceContext {
            type_of_expr: FxHashMap::default(),
            type_of_pat: FxHashMap::default(),
            var_unification_table: InPlaceUnificationTable::new(),
            return_ty: Ty::Unknown, // set in collect_fn_signature
            db,
            body,
            scopes,
            module,
            impl_block,
        }
    }

    fn resolve_all(mut self) -> InferenceResult {
        let mut expr_types = mem::replace(&mut self.type_of_expr, FxHashMap::default());
        for ty in expr_types.values_mut() {
            let resolved = self.resolve_ty_completely(mem::replace(ty, Ty::Unknown));
            *ty = resolved;
        }
        let mut pat_types = mem::replace(&mut self.type_of_pat, FxHashMap::default());
        for ty in pat_types.values_mut() {
            let resolved = self.resolve_ty_completely(mem::replace(ty, Ty::Unknown));
            *ty = resolved;
        }
        InferenceResult {
            type_of_expr: expr_types,
            type_of_pat: pat_types,
        }
    }

    fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
        self.type_of_expr.insert(expr, ty);
    }

    fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
        self.type_of_pat.insert(pat, ty);
    }

    fn make_ty(&self, type_ref: &TypeRef) -> Cancelable<Ty> {
        Ty::from_hir(self.db, &self.module, self.impl_block.as_ref(), type_ref)
    }

    fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
        match (ty1, ty2) {
            (Ty::Unknown, ..) => true,
            (.., Ty::Unknown) => true,
            (Ty::Bool, _)
            | (Ty::Str, _)
            | (Ty::Never, _)
            | (Ty::Char, _)
            | (Ty::Int(..), Ty::Int(..))
            | (Ty::Uint(..), Ty::Uint(..))
            | (Ty::Float(..), Ty::Float(..)) => ty1 == ty2,
            (
                Ty::Adt {
                    def_id: def_id1, ..
                },
                Ty::Adt {
                    def_id: def_id2, ..
                },
            ) if def_id1 == def_id2 => true,
            (Ty::Slice(t1), Ty::Slice(t2)) => self.unify(t1, t2),
            (Ty::RawPtr(t1, m1), Ty::RawPtr(t2, m2)) if m1 == m2 => self.unify(t1, t2),
            (Ty::Ref(t1, m1), Ty::Ref(t2, m2)) if m1 == m2 => self.unify(t1, t2),
            (Ty::FnPtr(sig1), Ty::FnPtr(sig2)) if sig1 == sig2 => true,
            (Ty::Tuple(ts1), Ty::Tuple(ts2)) if ts1.len() == ts2.len() => ts1
                .iter()
                .zip(ts2.iter())
                .all(|(t1, t2)| self.unify(t1, t2)),
            (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2))) => {
                self.var_unification_table.union(*tv1, *tv2);
                true
            }
            (Ty::Infer(InferTy::TypeVar(tv)), other) | (other, Ty::Infer(InferTy::TypeVar(tv))) => {
                self.var_unification_table
                    .union_value(*tv, TypeVarValue::Known(other.clone()));
                true
            }
            _ => false,
        }
    }

    fn new_type_var(&mut self) -> Ty {
        Ty::Infer(InferTy::TypeVar(
            self.var_unification_table.new_key(TypeVarValue::Unknown),
        ))
    }

    /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
    fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
        match ty {
            Ty::Unknown => self.new_type_var(),
            _ => ty,
        }
    }

    fn insert_type_vars(&mut self, ty: Ty) -> Ty {
        ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
    }

    /// Resolves the type as far as currently possible, replacing type variables
    /// by their known types. All types returned by the infer_* functions should
    /// be resolved as far as possible, i.e. contain no type variables with
    /// known type.
    fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
        ty.fold(&mut |ty| match ty {
            Ty::Infer(InferTy::TypeVar(tv)) => {
                if let Some(known_ty) = self.var_unification_table.probe_value(tv).known() {
                    // known_ty may contain other variables that are known by now
                    self.resolve_ty_as_possible(known_ty.clone())
                } else {
                    Ty::Infer(InferTy::TypeVar(tv))
                }
            }
            _ => ty,
        })
    }

    /// Resolves the type completely; type variables without known type are
    /// replaced by Ty::Unknown.
    fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
        ty.fold(&mut |ty| match ty {
            Ty::Infer(InferTy::TypeVar(tv)) => {
                if let Some(known_ty) = self.var_unification_table.probe_value(tv).known() {
                    // known_ty may contain other variables that are known by now
                    self.resolve_ty_completely(known_ty.clone())
                } else {
                    Ty::Unknown
                }
            }
            _ => ty,
        })
    }

    fn infer_path_expr(&mut self, expr: ExprId, path: &Path) -> Cancelable<Option<Ty>> {
        if path.is_ident() || path.is_self() {
            // resolve locally
            let name = path.as_ident().cloned().unwrap_or_else(Name::self_param);
            if let Some(scope_entry) = self.scopes.resolve_local_name(expr, name) {
                let ty = ctry!(self.type_of_pat.get(&scope_entry.pat()));
                let ty = self.resolve_ty_as_possible(ty.clone());
                return Ok(Some(ty));
            };
        };

        // resolve in module
        let resolved = ctry!(self.module.resolve_path(self.db, &path)?.take_values());
        let ty = self.db.type_for_def(resolved)?;
        let ty = self.insert_type_vars(ty);
        Ok(Some(ty))
    }

    fn resolve_variant(&self, path: Option<&Path>) -> Cancelable<(Ty, Option<DefId>)> {
        let path = if let Some(path) = path {
            path
        } else {
            return Ok((Ty::Unknown, None));
        };
        let def_id = if let Some(def_id) = self.module.resolve_path(self.db, &path)?.take_types() {
            def_id
        } else {
            return Ok((Ty::Unknown, None));
        };
        Ok(match def_id.resolve(self.db)? {
            Def::Struct(s) => {
                let ty = type_for_struct(self.db, s)?;
                (ty, Some(def_id))
            }
            _ => (Ty::Unknown, None),
        })
    }

    fn infer_expr(&mut self, expr: ExprId, expected: &Expectation) -> Cancelable<Ty> {
        let body = Arc::clone(&self.body); // avoid borrow checker problem
        let ty = match &body[expr] {
            Expr::Missing => Ty::Unknown,
            Expr::If {
                condition,
                then_branch,
                else_branch,
            } => {
                // if let is desugared to match, so this is always simple if
                self.infer_expr(*condition, &Expectation::has_type(Ty::Bool))?;
                let then_ty = self.infer_expr(*then_branch, expected)?;
                if let Some(else_branch) = else_branch {
                    self.infer_expr(*else_branch, expected)?;
                } else {
                    // no else branch -> unit
                    self.unify(&expected.ty, &Ty::unit()); // actually coerce
                }
                then_ty
            }
            Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected)?,
            Expr::Loop { body } => {
                self.infer_expr(*body, &Expectation::has_type(Ty::unit()))?;
                // TODO handle break with value
                Ty::Never
            }
            Expr::While { condition, body } => {
                // while let is desugared to a match loop, so this is always simple while
                self.infer_expr(*condition, &Expectation::has_type(Ty::Bool))?;
                self.infer_expr(*body, &Expectation::has_type(Ty::unit()))?;
                Ty::unit()
            }
            Expr::For { iterable, body, .. } => {
                let _iterable_ty = self.infer_expr(*iterable, &Expectation::none());
                // TODO write type for pat
                self.infer_expr(*body, &Expectation::has_type(Ty::unit()))?;
                Ty::unit()
            }
            Expr::Lambda { body, .. } => {
                // TODO write types for args, infer lambda type etc.
                let _body_ty = self.infer_expr(*body, &Expectation::none())?;
                Ty::Unknown
            }
            Expr::Call { callee, args } => {
                let callee_ty = self.infer_expr(*callee, &Expectation::none())?;
                let (arg_tys, ret_ty) = match &callee_ty {
                    Ty::FnPtr(sig) => (&sig.input[..], sig.output.clone()),
                    _ => {
                        // not callable
                        // TODO report an error?
                        (&[][..], Ty::Unknown)
                    }
                };
                for (i, arg) in args.iter().enumerate() {
                    self.infer_expr(
                        *arg,
                        &Expectation::has_type(arg_tys.get(i).cloned().unwrap_or(Ty::Unknown)),
                    )?;
                }
                ret_ty
            }
            Expr::MethodCall { receiver, args, .. } => {
                let _receiver_ty = self.infer_expr(*receiver, &Expectation::none())?;
                // TODO resolve method...
                for (_i, arg) in args.iter().enumerate() {
                    // TODO unify / expect argument type
                    self.infer_expr(*arg, &Expectation::none())?;
                }
                Ty::Unknown
            }
            Expr::Match { expr, arms } => {
                let _ty = self.infer_expr(*expr, &Expectation::none())?;
                for arm in arms {
                    // TODO type the bindings in pats
                    // TODO type the guard
                    let _ty = self.infer_expr(arm.expr, &Expectation::none())?;
                }
                // TODO unify all the match arm types
                Ty::Unknown
            }
            Expr::Path(p) => self.infer_path_expr(expr, p)?.unwrap_or(Ty::Unknown),
            Expr::Continue => Ty::Never,
            Expr::Break { expr } => {
                if let Some(expr) = expr {
                    // TODO handle break with value
                    self.infer_expr(*expr, &Expectation::none())?;
                }
                Ty::Never
            }
            Expr::Return { expr } => {
                if let Some(expr) = expr {
                    self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()))?;
                }
                Ty::Never
            }
            Expr::StructLit {
                path,
                fields,
                spread,
            } => {
                let (ty, def_id) = self.resolve_variant(path.as_ref())?;
                for field in fields {
                    let field_ty = if let Some(def_id) = def_id {
                        self.db.type_for_field(def_id, field.name.clone())?
                    } else {
                        Ty::Unknown
                    };
                    self.infer_expr(field.expr, &Expectation::has_type(field_ty))?;
                }
                if let Some(expr) = spread {
                    self.infer_expr(*expr, &Expectation::has_type(ty.clone()))?;
                }
                ty
            }
            Expr::Field { expr, name } => {
                let receiver_ty = self.infer_expr(*expr, &Expectation::none())?;
                let ty = match receiver_ty {
                    Ty::Tuple(fields) => {
                        let i = name.to_string().parse::<usize>().ok();
                        i.and_then(|i| fields.get(i).cloned())
                            .unwrap_or(Ty::Unknown)
                    }
                    Ty::Adt { def_id, .. } => self.db.type_for_field(def_id, name.clone())?,
                    _ => Ty::Unknown,
                };
                self.insert_type_vars(ty)
            }
            Expr::Try { expr } => {
                let _inner_ty = self.infer_expr(*expr, &Expectation::none())?;
                Ty::Unknown
            }
            Expr::Cast { expr, type_ref } => {
                let _inner_ty = self.infer_expr(*expr, &Expectation::none())?;
                let cast_ty =
                    Ty::from_hir(self.db, &self.module, self.impl_block.as_ref(), type_ref)?;
                let cast_ty = self.insert_type_vars(cast_ty);
                // TODO check the cast...
                cast_ty
            }
            Expr::Ref { expr, mutability } => {
                // TODO pass the expectation down
                let inner_ty = self.infer_expr(*expr, &Expectation::none())?;
                // TODO reference coercions etc.
                Ty::Ref(Arc::new(inner_ty), *mutability)
            }
            Expr::UnaryOp { expr, op } => {
                let inner_ty = self.infer_expr(*expr, &Expectation::none())?;
                match op {
                    Some(UnaryOp::Deref) => {
                        match inner_ty {
                            // builtin deref:
                            Ty::Ref(ref_inner, _) => (*ref_inner).clone(),
                            Ty::RawPtr(ptr_inner, _) => (*ptr_inner).clone(),
                            // TODO Deref::deref
                            _ => Ty::Unknown,
                        }
                    }
                    _ => Ty::Unknown,
                }
            }
            Expr::BinaryOp { lhs, rhs, op } => match op {
                Some(op) => {
                    let subtype_expectation = match op {
                        BinaryOp::BooleanAnd | BinaryOp::BooleanOr => {
                            Expectation::has_type(Ty::Bool)
                        }
                        _ => Expectation::none(),
                    };
                    let _lhs_ty = self.infer_expr(*lhs, &subtype_expectation)?;
                    let _rhs_ty = self.infer_expr(*rhs, &subtype_expectation)?;

                    if is_boolean_operator(*op) {
                        Ty::Bool
                    } else {
                        Ty::Unknown
                    }
                }
                _ => Ty::Unknown,
            },
        };
        // use a new type variable if we got Ty::Unknown here
        let ty = self.insert_type_vars_shallow(ty);
        self.unify(&ty, &expected.ty);
        let ty = self.resolve_ty_as_possible(ty);
        self.write_expr_ty(expr, ty.clone());
        Ok(ty)
    }

    fn infer_block(
        &mut self,
        statements: &[Statement],
        tail: Option<ExprId>,
        expected: &Expectation,
    ) -> Cancelable<Ty> {
        for stmt in statements {
            match stmt {
                Statement::Let {
                    pat,
                    type_ref,
                    initializer,
                } => {
                    let decl_ty = Ty::from_hir_opt(
                        self.db,
                        &self.module,
                        self.impl_block.as_ref(),
                        type_ref.as_ref(),
                    )?;
                    let decl_ty = self.insert_type_vars(decl_ty);
                    let ty = if let Some(expr) = initializer {
                        let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty))?;
                        expr_ty
                    } else {
                        decl_ty
                    };

                    self.write_pat_ty(*pat, ty);
                }
                Statement::Expr(expr) => {
                    self.infer_expr(*expr, &Expectation::none())?;
                }
            }
        }
        let ty = if let Some(expr) = tail {
            self.infer_expr(expr, expected)?
        } else {
            Ty::unit()
        };
        Ok(ty)
    }

    fn collect_fn_signature(&mut self, signature: &FnSignature) -> Cancelable<()> {
        let body = Arc::clone(&self.body); // avoid borrow checker problem
        for (type_ref, pat) in signature.args().iter().zip(body.args()) {
            let ty = self.make_ty(type_ref)?;
            let ty = self.insert_type_vars(ty);
            self.write_pat_ty(*pat, ty);
        }
        self.return_ty = {
            let ty = self.make_ty(signature.ret_type())?;
            let ty = self.insert_type_vars(ty);
            ty
        };
        Ok(())
    }

    fn infer_body(&mut self) -> Cancelable<()> {
        self.infer_expr(
            self.body.body_expr(),
            &Expectation::has_type(self.return_ty.clone()),
        )?;
        Ok(())
    }
}

pub fn infer(db: &impl HirDatabase, def_id: DefId) -> Cancelable<Arc<InferenceResult>> {
    let function = Function::new(def_id); // TODO: consts also need inference
    let body = function.body(db)?;
    let scopes = db.fn_scopes(def_id)?;
    let module = function.module(db)?;
    let impl_block = function.impl_block(db)?;
    let mut ctx = InferenceContext::new(db, body, scopes, module, impl_block);

    let signature = function.signature(db);
    ctx.collect_fn_signature(&signature)?;

    ctx.infer_body()?;

    Ok(Arc::new(ctx.resolve_all()))
}