aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir/src/ty/infer.rs
blob: 6fd00d457f6f78d907a5a15aee59db36657e9224 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.

use std::borrow::Cow;
use std::mem;
use std::ops::Index;
use std::sync::Arc;

use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
use rustc_hash::FxHashMap;

use hir_def::{
    data::{ConstData, FunctionData},
    path::known,
    resolver::{HasResolver, Resolver, TypeNs},
    type_ref::{Mutability, TypeRef},
    AdtId, DefWithBodyId,
};
use hir_expand::{diagnostics::DiagnosticSink, name};
use ra_arena::map::ArenaMap;
use ra_prof::profile;
use test_utils::tested_by;

use super::{
    traits::{Guidance, Obligation, ProjectionPredicate, Solution},
    ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypableDef,
    TypeCtor, TypeWalk, Uncertain,
};
use crate::{
    code_model::TypeAlias,
    db::HirDatabase,
    expr::{BindingAnnotation, Body, ExprId, PatId},
    ty::infer::diagnostics::InferenceDiagnostic,
    Adt, AssocItem, DefWithBody, FloatTy, Function, IntTy, Path, StructField, Trait, VariantDef,
};

macro_rules! ty_app {
    ($ctor:pat, $param:pat) => {
        crate::ty::Ty::Apply(crate::ty::ApplicationTy { ctor: $ctor, parameters: $param })
    };
    ($ctor:pat) => {
        ty_app!($ctor, _)
    };
}

mod unify;
mod path;
mod expr;
mod pat;
mod coerce;

/// The entry point of type inference.
pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
    let _p = profile("infer_query");
    let resolver = DefWithBodyId::from(def).resolver(db);
    let mut ctx = InferenceContext::new(db, def, resolver);

    match &def {
        DefWithBody::Const(c) => ctx.collect_const(&db.const_data(c.id)),
        DefWithBody::Function(f) => ctx.collect_fn(&db.function_data(f.id)),
        DefWithBody::Static(s) => ctx.collect_const(&db.static_data(s.id)),
    }

    ctx.infer_body();

    Arc::new(ctx.resolve_all())
}

#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
enum ExprOrPatId {
    ExprId(ExprId),
    PatId(PatId),
}

impl_froms!(ExprOrPatId: ExprId, PatId);

/// Binding modes inferred for patterns.
/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum BindingMode {
    Move,
    Ref(Mutability),
}

impl BindingMode {
    pub fn convert(annotation: BindingAnnotation) -> BindingMode {
        match annotation {
            BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
            BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
            BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
        }
    }
}

impl Default for BindingMode {
    fn default() -> Self {
        BindingMode::Move
    }
}

/// A mismatch between an expected and an inferred type.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeMismatch {
    pub expected: Ty,
    pub actual: Ty,
}

/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct InferenceResult {
    /// For each method call expr, records the function it resolves to.
    method_resolutions: FxHashMap<ExprId, Function>,
    /// For each field access expr, records the field it resolves to.
    field_resolutions: FxHashMap<ExprId, StructField>,
    /// For each field in record literal, records the field it resolves to.
    record_field_resolutions: FxHashMap<ExprId, StructField>,
    /// For each struct literal, records the variant it resolves to.
    variant_resolutions: FxHashMap<ExprOrPatId, VariantDef>,
    /// For each associated item record what it resolves to
    assoc_resolutions: FxHashMap<ExprOrPatId, AssocItem>,
    diagnostics: Vec<InferenceDiagnostic>,
    pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
    pub(super) type_of_pat: ArenaMap<PatId, Ty>,
    pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
}

impl InferenceResult {
    pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
        self.method_resolutions.get(&expr).copied()
    }
    pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
        self.field_resolutions.get(&expr).copied()
    }
    pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructField> {
        self.record_field_resolutions.get(&expr).copied()
    }
    pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantDef> {
        self.variant_resolutions.get(&id.into()).copied()
    }
    pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantDef> {
        self.variant_resolutions.get(&id.into()).copied()
    }
    pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItem> {
        self.assoc_resolutions.get(&id.into()).copied()
    }
    pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItem> {
        self.assoc_resolutions.get(&id.into()).copied()
    }
    pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
        self.type_mismatches.get(expr)
    }
    pub(crate) fn add_diagnostics(
        &self,
        db: &impl HirDatabase,
        owner: Function,
        sink: &mut DiagnosticSink,
    ) {
        self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
    }
}

impl Index<ExprId> for InferenceResult {
    type Output = Ty;

    fn index(&self, expr: ExprId) -> &Ty {
        self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
    }
}

impl Index<PatId> for InferenceResult {
    type Output = Ty;

    fn index(&self, pat: PatId) -> &Ty {
        self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
    }
}

/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
    db: &'a D,
    owner: DefWithBody,
    body: Arc<Body>,
    resolver: Resolver,
    var_unification_table: InPlaceUnificationTable<TypeVarId>,
    trait_env: Arc<TraitEnvironment>,
    obligations: Vec<Obligation>,
    result: InferenceResult,
    /// The return type of the function being inferred.
    return_ty: Ty,

    /// Impls of `CoerceUnsized` used in coercion.
    /// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
    // FIXME: Use trait solver for this.
    // Chalk seems unable to work well with builtin impl of `Unsize` now.
    coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
}

impl<'a, D: HirDatabase> InferenceContext<'a, D> {
    fn new(db: &'a D, owner: DefWithBody, resolver: Resolver) -> Self {
        InferenceContext {
            result: InferenceResult::default(),
            var_unification_table: InPlaceUnificationTable::new(),
            obligations: Vec::default(),
            return_ty: Ty::Unknown, // set in collect_fn_signature
            trait_env: TraitEnvironment::lower(db, &resolver),
            coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
            db,
            owner,
            body: db.body(owner.into()),
            resolver,
        }
    }

    fn resolve_all(mut self) -> InferenceResult {
        // FIXME resolve obligations as well (use Guidance if necessary)
        let mut result = mem::replace(&mut self.result, InferenceResult::default());
        let mut tv_stack = Vec::new();
        for ty in result.type_of_expr.values_mut() {
            let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
            *ty = resolved;
        }
        for ty in result.type_of_pat.values_mut() {
            let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
            *ty = resolved;
        }
        result
    }

    fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
        self.result.type_of_expr.insert(expr, ty);
    }

    fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
        self.result.method_resolutions.insert(expr, func);
    }

    fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
        self.result.field_resolutions.insert(expr, field);
    }

    fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantDef) {
        self.result.variant_resolutions.insert(id, variant);
    }

    fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItem) {
        self.result.assoc_resolutions.insert(id, item);
    }

    fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
        self.result.type_of_pat.insert(pat, ty);
    }

    fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
        self.result.diagnostics.push(diagnostic);
    }

    fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
        let ty = Ty::from_hir(
            self.db,
            // FIXME use right resolver for block
            &self.resolver,
            type_ref,
        );
        let ty = self.insert_type_vars(ty);
        self.normalize_associated_types_in(ty)
    }

    fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
        substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
    }

    fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
        self.unify_inner(ty1, ty2, 0)
    }

    fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
        if depth > 1000 {
            // prevent stackoverflows
            panic!("infinite recursion in unification");
        }
        if ty1 == ty2 {
            return true;
        }
        // try to resolve type vars first
        let ty1 = self.resolve_ty_shallow(ty1);
        let ty2 = self.resolve_ty_shallow(ty2);
        match (&*ty1, &*ty2) {
            (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
                self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
            }
            _ => self.unify_inner_trivial(&ty1, &ty2),
        }
    }

    fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
        match (ty1, ty2) {
            (Ty::Unknown, _) | (_, Ty::Unknown) => true,

            (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
            | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
            | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
            | (
                Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
                Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
            ) => {
                // both type vars are unknown since we tried to resolve them
                self.var_unification_table.union(*tv1, *tv2);
                true
            }

            // The order of MaybeNeverTypeVar matters here.
            // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
            // Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
            (Ty::Infer(InferTy::TypeVar(tv)), other)
            | (other, Ty::Infer(InferTy::TypeVar(tv)))
            | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
            | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
            | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
            | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
            | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
            | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
                // the type var is unknown since we tried to resolve it
                self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
                true
            }

            _ => false,
        }
    }

    fn new_type_var(&mut self) -> Ty {
        Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
    }

    fn new_integer_var(&mut self) -> Ty {
        Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
    }

    fn new_float_var(&mut self) -> Ty {
        Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
    }

    fn new_maybe_never_type_var(&mut self) -> Ty {
        Ty::Infer(InferTy::MaybeNeverTypeVar(
            self.var_unification_table.new_key(TypeVarValue::Unknown),
        ))
    }

    /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
    fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
        match ty {
            Ty::Unknown => self.new_type_var(),
            Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
                self.new_integer_var()
            }
            Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
                self.new_float_var()
            }
            _ => ty,
        }
    }

    fn insert_type_vars(&mut self, ty: Ty) -> Ty {
        ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
    }

    fn resolve_obligations_as_possible(&mut self) {
        let obligations = mem::replace(&mut self.obligations, Vec::new());
        for obligation in obligations {
            let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
            let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
            let solution = self
                .db
                .trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone());

            match solution {
                Some(Solution::Unique(substs)) => {
                    canonicalized.apply_solution(self, substs.0);
                }
                Some(Solution::Ambig(Guidance::Definite(substs))) => {
                    canonicalized.apply_solution(self, substs.0);
                    self.obligations.push(obligation);
                }
                Some(_) => {
                    // FIXME use this when trying to resolve everything at the end
                    self.obligations.push(obligation);
                }
                None => {
                    // FIXME obligation cannot be fulfilled => diagnostic
                }
            };
        }
    }

    /// Resolves the type as far as currently possible, replacing type variables
    /// by their known types. All types returned by the infer_* functions should
    /// be resolved as far as possible, i.e. contain no type variables with
    /// known type.
    fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
        self.resolve_obligations_as_possible();

        ty.fold(&mut |ty| match ty {
            Ty::Infer(tv) => {
                let inner = tv.to_inner();
                if tv_stack.contains(&inner) {
                    tested_by!(type_var_cycles_resolve_as_possible);
                    // recursive type
                    return tv.fallback_value();
                }
                if let Some(known_ty) =
                    self.var_unification_table.inlined_probe_value(inner).known()
                {
                    // known_ty may contain other variables that are known by now
                    tv_stack.push(inner);
                    let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
                    tv_stack.pop();
                    result
                } else {
                    ty
                }
            }
            _ => ty,
        })
    }

    /// If `ty` is a type variable with known type, returns that type;
    /// otherwise, return ty.
    fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
        let mut ty = Cow::Borrowed(ty);
        // The type variable could resolve to a int/float variable. Hence try
        // resolving up to three times; each type of variable shouldn't occur
        // more than once
        for i in 0..3 {
            if i > 0 {
                tested_by!(type_var_resolves_to_int_var);
            }
            match &*ty {
                Ty::Infer(tv) => {
                    let inner = tv.to_inner();
                    match self.var_unification_table.inlined_probe_value(inner).known() {
                        Some(known_ty) => {
                            // The known_ty can't be a type var itself
                            ty = Cow::Owned(known_ty.clone());
                        }
                        _ => return ty,
                    }
                }
                _ => return ty,
            }
        }
        log::error!("Inference variable still not resolved: {:?}", ty);
        ty
    }

    /// Recurses through the given type, normalizing associated types mentioned
    /// in it by replacing them by type variables and registering obligations to
    /// resolve later. This should be done once for every type we get from some
    /// type annotation (e.g. from a let type annotation, field type or function
    /// call). `make_ty` handles this already, but e.g. for field types we need
    /// to do it as well.
    fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
        let ty = self.resolve_ty_as_possible(&mut vec![], ty);
        ty.fold(&mut |ty| match ty {
            Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
            _ => ty,
        })
    }

    fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
        let var = self.new_type_var();
        let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
        let obligation = Obligation::Projection(predicate);
        self.obligations.push(obligation);
        var
    }

    /// Resolves the type completely; type variables without known type are
    /// replaced by Ty::Unknown.
    fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
        ty.fold(&mut |ty| match ty {
            Ty::Infer(tv) => {
                let inner = tv.to_inner();
                if tv_stack.contains(&inner) {
                    tested_by!(type_var_cycles_resolve_completely);
                    // recursive type
                    return tv.fallback_value();
                }
                if let Some(known_ty) =
                    self.var_unification_table.inlined_probe_value(inner).known()
                {
                    // known_ty may contain other variables that are known by now
                    tv_stack.push(inner);
                    let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
                    tv_stack.pop();
                    result
                } else {
                    tv.fallback_value()
                }
            }
            _ => ty,
        })
    }

    fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
        let path = match path {
            Some(path) => path,
            None => return (Ty::Unknown, None),
        };
        let resolver = &self.resolver;
        let def: TypableDef =
            // FIXME: this should resolve assoc items as well, see this example:
            // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
            match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
                Some(TypeNs::AdtId(AdtId::StructId(it))) => it.into(),
                Some(TypeNs::AdtId(AdtId::UnionId(it))) => it.into(),
                Some(TypeNs::AdtSelfType(adt)) => adt.into(),
                Some(TypeNs::EnumVariantId(it)) => it.into(),
                Some(TypeNs::TypeAliasId(it)) => it.into(),

                Some(TypeNs::SelfType(_)) |
                Some(TypeNs::GenericParam(_)) |
                Some(TypeNs::BuiltinType(_)) |
                Some(TypeNs::TraitId(_)) |
                Some(TypeNs::AdtId(AdtId::EnumId(_))) |
                None => {
                    return (Ty::Unknown, None)
                }
            };
        // FIXME remove the duplication between here and `Ty::from_path`?
        let substs = Ty::substs_from_path(self.db, resolver, path, def);
        match def {
            TypableDef::Adt(Adt::Struct(s)) => {
                let ty = s.ty(self.db);
                let ty = self.insert_type_vars(ty.apply_substs(substs));
                (ty, Some(s.into()))
            }
            TypableDef::EnumVariant(var) => {
                let ty = var.parent_enum(self.db).ty(self.db);
                let ty = self.insert_type_vars(ty.apply_substs(substs));
                (ty, Some(var.into()))
            }
            TypableDef::Adt(Adt::Enum(_))
            | TypableDef::Adt(Adt::Union(_))
            | TypableDef::TypeAlias(_)
            | TypableDef::Function(_)
            | TypableDef::Const(_)
            | TypableDef::Static(_)
            | TypableDef::BuiltinType(_) => (Ty::Unknown, None),
        }
    }

    fn collect_const(&mut self, data: &ConstData) {
        self.return_ty = self.make_ty(&data.type_ref);
    }

    fn collect_fn(&mut self, data: &FunctionData) {
        let body = Arc::clone(&self.body); // avoid borrow checker problem
        for (type_ref, pat) in data.params.iter().zip(body.params.iter()) {
            let ty = self.make_ty(type_ref);

            self.infer_pat(*pat, &ty, BindingMode::default());
        }
        self.return_ty = self.make_ty(&data.ret_type);
    }

    fn infer_body(&mut self) {
        self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
    }

    fn resolve_into_iter_item(&self) -> Option<TypeAlias> {
        let path = known::std_iter_into_iterator();
        let trait_: Trait = self.resolver.resolve_known_trait(self.db, &path)?.into();
        trait_.associated_type_by_name(self.db, &name::ITEM_TYPE)
    }

    fn resolve_ops_try_ok(&self) -> Option<TypeAlias> {
        let path = known::std_ops_try();
        let trait_: Trait = self.resolver.resolve_known_trait(self.db, &path)?.into();
        trait_.associated_type_by_name(self.db, &name::OK_TYPE)
    }

    fn resolve_future_future_output(&self) -> Option<TypeAlias> {
        let path = known::std_future_future();
        let trait_: Trait = self.resolver.resolve_known_trait(self.db, &path)?.into();
        trait_.associated_type_by_name(self.db, &name::OUTPUT_TYPE)
    }

    fn resolve_boxed_box(&self) -> Option<Adt> {
        let path = known::std_boxed_box();
        let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
        Some(Adt::Struct(struct_.into()))
    }
}

/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(pub(super) u32);

impl UnifyKey for TypeVarId {
    type Value = TypeVarValue;

    fn index(&self) -> u32 {
        self.0
    }

    fn from_index(i: u32) -> Self {
        TypeVarId(i)
    }

    fn tag() -> &'static str {
        "TypeVarId"
    }
}

/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
    Known(Ty),
    Unknown,
}

impl TypeVarValue {
    fn known(&self) -> Option<&Ty> {
        match self {
            TypeVarValue::Known(ty) => Some(ty),
            TypeVarValue::Unknown => None,
        }
    }
}

impl UnifyValue for TypeVarValue {
    type Error = NoError;

    fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
        match (value1, value2) {
            // We should never equate two type variables, both of which have
            // known types. Instead, we recursively equate those types.
            (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
                "equating two type variables, both of which have known types: {:?} and {:?}",
                t1, t2
            ),

            // If one side is known, prefer that one.
            (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
            (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),

            (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
        }
    }
}

/// The kinds of placeholders we need during type inference. There's separate
/// values for general types, and for integer and float variables. The latter
/// two are used for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
    TypeVar(TypeVarId),
    IntVar(TypeVarId),
    FloatVar(TypeVarId),
    MaybeNeverTypeVar(TypeVarId),
}

impl InferTy {
    fn to_inner(self) -> TypeVarId {
        match self {
            InferTy::TypeVar(ty)
            | InferTy::IntVar(ty)
            | InferTy::FloatVar(ty)
            | InferTy::MaybeNeverTypeVar(ty) => ty,
        }
    }

    fn fallback_value(self) -> Ty {
        match self {
            InferTy::TypeVar(..) => Ty::Unknown,
            InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
            InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
            InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
        }
    }
}

/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
    ty: Ty,
    // FIXME: In some cases, we need to be aware whether the expectation is that
    // the type match exactly what we passed, or whether it just needs to be
    // coercible to the expected type. See Expectation::rvalue_hint in rustc.
}

impl Expectation {
    /// The expectation that the type of the expression needs to equal the given
    /// type.
    fn has_type(ty: Ty) -> Self {
        Expectation { ty }
    }

    /// This expresses no expectation on the type.
    fn none() -> Self {
        Expectation { ty: Ty::Unknown }
    }
}

mod diagnostics {
    use hir_expand::diagnostics::DiagnosticSink;

    use crate::{db::HirDatabase, diagnostics::NoSuchField, expr::ExprId, Function, HasSource};

    #[derive(Debug, PartialEq, Eq, Clone)]
    pub(super) enum InferenceDiagnostic {
        NoSuchField { expr: ExprId, field: usize },
    }

    impl InferenceDiagnostic {
        pub(super) fn add_to(
            &self,
            db: &impl HirDatabase,
            owner: Function,
            sink: &mut DiagnosticSink,
        ) {
            match self {
                InferenceDiagnostic::NoSuchField { expr, field } => {
                    let file = owner.source(db).file_id;
                    let field = owner.body_source_map(db).field_syntax(*expr, *field);
                    sink.push(NoSuchField { file, field })
                }
            }
        }
    }
}