aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir/src/ty/infer/expr.rs
blob: f8807c742881b8d3ee96b7562373d5685cdefa49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
//! Type inference for expressions.

use std::iter::{repeat, repeat_with};
use std::sync::Arc;

use super::{BindingMode, Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch};
use crate::{
    db::HirDatabase,
    expr::{self, Array, BinaryOp, Expr, ExprId, Literal, Statement, UnaryOp},
    generics::{GenericParams, HasGenericParams},
    name,
    nameres::Namespace,
    path::{GenericArg, GenericArgs},
    ty::{
        autoderef, method_resolution, op, primitive, CallableDef, InferTy, Mutability, Obligation,
        ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor, TypeWalk,
    },
    Adt, Name,
};

impl<'a, D: HirDatabase> InferenceContext<'a, D> {
    pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
        let ty = self.infer_expr_inner(tgt_expr, expected);
        let could_unify = self.unify(&ty, &expected.ty);
        if !could_unify {
            self.result.type_mismatches.insert(
                tgt_expr,
                TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
            );
        }
        let ty = self.resolve_ty_as_possible(&mut vec![], ty);
        ty
    }

    /// Infer type of expression with possibly implicit coerce to the expected type.
    /// Return the type after possible coercion.
    fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
        let ty = self.infer_expr_inner(expr, &expected);
        let ty = if !self.coerce(&ty, &expected.ty) {
            self.result
                .type_mismatches
                .insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
            // Return actual type when type mismatch.
            // This is needed for diagnostic when return type mismatch.
            ty
        } else if expected.ty == Ty::Unknown {
            ty
        } else {
            expected.ty.clone()
        };

        self.resolve_ty_as_possible(&mut vec![], ty)
    }

    fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
        let body = Arc::clone(&self.body); // avoid borrow checker problem
        let ty = match &body[tgt_expr] {
            Expr::Missing => Ty::Unknown,
            Expr::If { condition, then_branch, else_branch } => {
                // if let is desugared to match, so this is always simple if
                self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));

                let then_ty = self.infer_expr_inner(*then_branch, &expected);
                let else_ty = match else_branch {
                    Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
                    None => Ty::unit(),
                };

                self.coerce_merge_branch(&then_ty, &else_ty)
            }
            Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
            Expr::TryBlock { body } => {
                let _inner = self.infer_expr(*body, expected);
                // FIXME should be std::result::Result<{inner}, _>
                Ty::Unknown
            }
            Expr::Loop { body } => {
                self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
                // FIXME handle break with value
                Ty::simple(TypeCtor::Never)
            }
            Expr::While { condition, body } => {
                // while let is desugared to a match loop, so this is always simple while
                self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
                self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
                Ty::unit()
            }
            Expr::For { iterable, body, pat } => {
                let iterable_ty = self.infer_expr(*iterable, &Expectation::none());

                let pat_ty = match self.resolve_into_iter_item() {
                    Some(into_iter_item_alias) => {
                        let pat_ty = self.new_type_var();
                        let projection = ProjectionPredicate {
                            ty: pat_ty.clone(),
                            projection_ty: ProjectionTy {
                                associated_ty: into_iter_item_alias,
                                parameters: Substs::single(iterable_ty),
                            },
                        };
                        self.obligations.push(Obligation::Projection(projection));
                        self.resolve_ty_as_possible(&mut vec![], pat_ty)
                    }
                    None => Ty::Unknown,
                };

                self.infer_pat(*pat, &pat_ty, BindingMode::default());
                self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
                Ty::unit()
            }
            Expr::Lambda { body, args, arg_types } => {
                assert_eq!(args.len(), arg_types.len());

                let mut sig_tys = Vec::new();

                for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
                    let expected = if let Some(type_ref) = arg_type {
                        self.make_ty(type_ref)
                    } else {
                        Ty::Unknown
                    };
                    let arg_ty = self.infer_pat(*arg_pat, &expected, BindingMode::default());
                    sig_tys.push(arg_ty);
                }

                // add return type
                let ret_ty = self.new_type_var();
                sig_tys.push(ret_ty.clone());
                let sig_ty = Ty::apply(
                    TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
                    Substs(sig_tys.into()),
                );
                let closure_ty = Ty::apply_one(
                    TypeCtor::Closure { def: self.body.owner(), expr: tgt_expr },
                    sig_ty,
                );

                // Eagerly try to relate the closure type with the expected
                // type, otherwise we often won't have enough information to
                // infer the body.
                self.coerce(&closure_ty, &expected.ty);

                self.infer_expr(*body, &Expectation::has_type(ret_ty));
                closure_ty
            }
            Expr::Call { callee, args } => {
                let callee_ty = self.infer_expr(*callee, &Expectation::none());
                let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
                    Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
                    None => {
                        // Not callable
                        // FIXME: report an error
                        (Vec::new(), Ty::Unknown)
                    }
                };
                self.register_obligations_for_call(&callee_ty);
                self.check_call_arguments(args, &param_tys);
                let ret_ty = self.normalize_associated_types_in(ret_ty);
                ret_ty
            }
            Expr::MethodCall { receiver, args, method_name, generic_args } => self
                .infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
            Expr::Match { expr, arms } => {
                let input_ty = self.infer_expr(*expr, &Expectation::none());

                let mut result_ty = self.new_maybe_never_type_var();

                for arm in arms {
                    for &pat in &arm.pats {
                        let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
                    }
                    if let Some(guard_expr) = arm.guard {
                        self.infer_expr(
                            guard_expr,
                            &Expectation::has_type(Ty::simple(TypeCtor::Bool)),
                        );
                    }

                    let arm_ty = self.infer_expr_inner(arm.expr, &expected);
                    result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
                }

                result_ty
            }
            Expr::Path(p) => {
                // FIXME this could be more efficient...
                let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr);
                self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
            }
            Expr::Continue => Ty::simple(TypeCtor::Never),
            Expr::Break { expr } => {
                if let Some(expr) = expr {
                    // FIXME handle break with value
                    self.infer_expr(*expr, &Expectation::none());
                }
                Ty::simple(TypeCtor::Never)
            }
            Expr::Return { expr } => {
                if let Some(expr) = expr {
                    self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
                }
                Ty::simple(TypeCtor::Never)
            }
            Expr::RecordLit { path, fields, spread } => {
                let (ty, def_id) = self.resolve_variant(path.as_ref());
                if let Some(variant) = def_id {
                    self.write_variant_resolution(tgt_expr.into(), variant);
                }

                self.unify(&ty, &expected.ty);

                let substs = ty.substs().unwrap_or_else(Substs::empty);
                for (field_idx, field) in fields.iter().enumerate() {
                    let field_ty = def_id
                        .and_then(|it| match it.field(self.db, &field.name) {
                            Some(field) => Some(field),
                            None => {
                                self.push_diagnostic(InferenceDiagnostic::NoSuchField {
                                    expr: tgt_expr,
                                    field: field_idx,
                                });
                                None
                            }
                        })
                        .map_or(Ty::Unknown, |field| field.ty(self.db))
                        .subst(&substs);
                    self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
                }
                if let Some(expr) = spread {
                    self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
                }
                ty
            }
            Expr::Field { expr, name } => {
                let receiver_ty = self.infer_expr(*expr, &Expectation::none());
                let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
                let ty = autoderef::autoderef(
                    self.db,
                    &self.resolver.clone(),
                    canonicalized.value.clone(),
                )
                .find_map(|derefed_ty| match canonicalized.decanonicalize_ty(derefed_ty.value) {
                    Ty::Apply(a_ty) => match a_ty.ctor {
                        TypeCtor::Tuple { .. } => name
                            .as_tuple_index()
                            .and_then(|idx| a_ty.parameters.0.get(idx).cloned()),
                        TypeCtor::Adt(Adt::Struct(s)) => s.field(self.db, name).map(|field| {
                            self.write_field_resolution(tgt_expr, field);
                            field.ty(self.db).subst(&a_ty.parameters)
                        }),
                        _ => None,
                    },
                    _ => None,
                })
                .unwrap_or(Ty::Unknown);
                let ty = self.insert_type_vars(ty);
                self.normalize_associated_types_in(ty)
            }
            Expr::Await { expr } => {
                let inner_ty = self.infer_expr(*expr, &Expectation::none());
                let ty = match self.resolve_future_future_output() {
                    Some(future_future_output_alias) => {
                        let ty = self.new_type_var();
                        let projection = ProjectionPredicate {
                            ty: ty.clone(),
                            projection_ty: ProjectionTy {
                                associated_ty: future_future_output_alias,
                                parameters: Substs::single(inner_ty),
                            },
                        };
                        self.obligations.push(Obligation::Projection(projection));
                        self.resolve_ty_as_possible(&mut vec![], ty)
                    }
                    None => Ty::Unknown,
                };
                ty
            }
            Expr::Try { expr } => {
                let inner_ty = self.infer_expr(*expr, &Expectation::none());
                let ty = match self.resolve_ops_try_ok() {
                    Some(ops_try_ok_alias) => {
                        let ty = self.new_type_var();
                        let projection = ProjectionPredicate {
                            ty: ty.clone(),
                            projection_ty: ProjectionTy {
                                associated_ty: ops_try_ok_alias,
                                parameters: Substs::single(inner_ty),
                            },
                        };
                        self.obligations.push(Obligation::Projection(projection));
                        self.resolve_ty_as_possible(&mut vec![], ty)
                    }
                    None => Ty::Unknown,
                };
                ty
            }
            Expr::Cast { expr, type_ref } => {
                let _inner_ty = self.infer_expr(*expr, &Expectation::none());
                let cast_ty = self.make_ty(type_ref);
                // FIXME check the cast...
                cast_ty
            }
            Expr::Ref { expr, mutability } => {
                let expectation =
                    if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
                        if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
                            // FIXME: throw type error - expected mut reference but found shared ref,
                            // which cannot be coerced
                        }
                        Expectation::has_type(Ty::clone(exp_inner))
                    } else {
                        Expectation::none()
                    };
                // FIXME reference coercions etc.
                let inner_ty = self.infer_expr(*expr, &expectation);
                Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
            }
            Expr::Box { expr } => {
                let inner_ty = self.infer_expr(*expr, &Expectation::none());
                if let Some(box_) = self.resolve_boxed_box() {
                    Ty::apply_one(TypeCtor::Adt(box_), inner_ty)
                } else {
                    Ty::Unknown
                }
            }
            Expr::UnaryOp { expr, op } => {
                let inner_ty = self.infer_expr(*expr, &Expectation::none());
                match op {
                    UnaryOp::Deref => {
                        let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
                        if let Some(derefed_ty) =
                            autoderef::deref(self.db, &self.resolver, &canonicalized.value)
                        {
                            canonicalized.decanonicalize_ty(derefed_ty.value)
                        } else {
                            Ty::Unknown
                        }
                    }
                    UnaryOp::Neg => {
                        match &inner_ty {
                            Ty::Apply(a_ty) => match a_ty.ctor {
                                TypeCtor::Int(primitive::UncertainIntTy::Unknown)
                                | TypeCtor::Int(primitive::UncertainIntTy::Known(
                                    primitive::IntTy {
                                        signedness: primitive::Signedness::Signed,
                                        ..
                                    },
                                ))
                                | TypeCtor::Float(..) => inner_ty,
                                _ => Ty::Unknown,
                            },
                            Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
                                inner_ty
                            }
                            // FIXME: resolve ops::Neg trait
                            _ => Ty::Unknown,
                        }
                    }
                    UnaryOp::Not => {
                        match &inner_ty {
                            Ty::Apply(a_ty) => match a_ty.ctor {
                                TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
                                _ => Ty::Unknown,
                            },
                            Ty::Infer(InferTy::IntVar(..)) => inner_ty,
                            // FIXME: resolve ops::Not trait for inner_ty
                            _ => Ty::Unknown,
                        }
                    }
                }
            }
            Expr::BinaryOp { lhs, rhs, op } => match op {
                Some(op) => {
                    let lhs_expectation = match op {
                        BinaryOp::LogicOp(..) => Expectation::has_type(Ty::simple(TypeCtor::Bool)),
                        _ => Expectation::none(),
                    };
                    let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
                    // FIXME: find implementation of trait corresponding to operation
                    // symbol and resolve associated `Output` type
                    let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
                    let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));

                    // FIXME: similar as above, return ty is often associated trait type
                    op::binary_op_return_ty(*op, rhs_ty)
                }
                _ => Ty::Unknown,
            },
            Expr::Index { base, index } => {
                let _base_ty = self.infer_expr(*base, &Expectation::none());
                let _index_ty = self.infer_expr(*index, &Expectation::none());
                // FIXME: use `std::ops::Index::Output` to figure out the real return type
                Ty::Unknown
            }
            Expr::Tuple { exprs } => {
                let mut tys = match &expected.ty {
                    ty_app!(TypeCtor::Tuple { .. }, st) => st
                        .iter()
                        .cloned()
                        .chain(repeat_with(|| self.new_type_var()))
                        .take(exprs.len())
                        .collect::<Vec<_>>(),
                    _ => (0..exprs.len()).map(|_| self.new_type_var()).collect(),
                };

                for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
                    self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
                }

                Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
            }
            Expr::Array(array) => {
                let elem_ty = match &expected.ty {
                    ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
                        st.as_single().clone()
                    }
                    _ => self.new_type_var(),
                };

                match array {
                    Array::ElementList(items) => {
                        for expr in items.iter() {
                            self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
                        }
                    }
                    Array::Repeat { initializer, repeat } => {
                        self.infer_expr_coerce(
                            *initializer,
                            &Expectation::has_type(elem_ty.clone()),
                        );
                        self.infer_expr(
                            *repeat,
                            &Expectation::has_type(Ty::simple(TypeCtor::Int(
                                primitive::UncertainIntTy::Known(primitive::IntTy::usize()),
                            ))),
                        );
                    }
                }

                Ty::apply_one(TypeCtor::Array, elem_ty)
            }
            Expr::Literal(lit) => match lit {
                Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
                Literal::String(..) => {
                    Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
                }
                Literal::ByteString(..) => {
                    let byte_type = Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(
                        primitive::IntTy::u8(),
                    )));
                    let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
                    Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
                }
                Literal::Char(..) => Ty::simple(TypeCtor::Char),
                Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int(*ty)),
                Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float(*ty)),
            },
        };
        // use a new type variable if we got Ty::Unknown here
        let ty = self.insert_type_vars_shallow(ty);
        let ty = self.resolve_ty_as_possible(&mut vec![], ty);
        self.write_expr_ty(tgt_expr, ty.clone());
        ty
    }

    fn infer_block(
        &mut self,
        statements: &[Statement],
        tail: Option<ExprId>,
        expected: &Expectation,
    ) -> Ty {
        let mut diverges = false;
        for stmt in statements {
            match stmt {
                Statement::Let { pat, type_ref, initializer } => {
                    let decl_ty =
                        type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);

                    // Always use the declared type when specified
                    let mut ty = decl_ty.clone();

                    if let Some(expr) = initializer {
                        let actual_ty =
                            self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
                        if decl_ty == Ty::Unknown {
                            ty = actual_ty;
                        }
                    }

                    let ty = self.resolve_ty_as_possible(&mut vec![], ty);
                    self.infer_pat(*pat, &ty, BindingMode::default());
                }
                Statement::Expr(expr) => {
                    if let ty_app!(TypeCtor::Never) = self.infer_expr(*expr, &Expectation::none()) {
                        diverges = true;
                    }
                }
            }
        }

        let ty = if let Some(expr) = tail {
            self.infer_expr_coerce(expr, expected)
        } else {
            self.coerce(&Ty::unit(), &expected.ty);
            Ty::unit()
        };
        if diverges {
            Ty::simple(TypeCtor::Never)
        } else {
            ty
        }
    }

    fn infer_method_call(
        &mut self,
        tgt_expr: ExprId,
        receiver: ExprId,
        args: &[ExprId],
        method_name: &Name,
        generic_args: Option<&GenericArgs>,
    ) -> Ty {
        let receiver_ty = self.infer_expr(receiver, &Expectation::none());
        let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
        let resolved = method_resolution::lookup_method(
            &canonicalized_receiver.value,
            self.db,
            method_name,
            &self.resolver,
        );
        let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
            Some((ty, func)) => {
                let ty = canonicalized_receiver.decanonicalize_ty(ty);
                self.write_method_resolution(tgt_expr, func);
                (
                    ty,
                    self.db.type_for_def(func.into(), Namespace::Values),
                    Some(func.generic_params(self.db)),
                )
            }
            None => (receiver_ty, Ty::Unknown, None),
        };
        let substs = self.substs_for_method_call(def_generics, generic_args, &derefed_receiver_ty);
        let method_ty = method_ty.apply_substs(substs);
        let method_ty = self.insert_type_vars(method_ty);
        self.register_obligations_for_call(&method_ty);
        let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
            Some(sig) => {
                if !sig.params().is_empty() {
                    (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
                } else {
                    (Ty::Unknown, Vec::new(), sig.ret().clone())
                }
            }
            None => (Ty::Unknown, Vec::new(), Ty::Unknown),
        };
        // Apply autoref so the below unification works correctly
        // FIXME: return correct autorefs from lookup_method
        let actual_receiver_ty = match expected_receiver_ty.as_reference() {
            Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
            _ => derefed_receiver_ty,
        };
        self.unify(&expected_receiver_ty, &actual_receiver_ty);

        self.check_call_arguments(args, &param_tys);
        let ret_ty = self.normalize_associated_types_in(ret_ty);
        ret_ty
    }

    fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
        // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
        // We do this in a pretty awful way: first we type-check any arguments
        // that are not closures, then we type-check the closures. This is so
        // that we have more information about the types of arguments when we
        // type-check the functions. This isn't really the right way to do this.
        for &check_closures in &[false, true] {
            let param_iter = param_tys.iter().cloned().chain(repeat(Ty::Unknown));
            for (&arg, param_ty) in args.iter().zip(param_iter) {
                let is_closure = match &self.body[arg] {
                    Expr::Lambda { .. } => true,
                    _ => false,
                };

                if is_closure != check_closures {
                    continue;
                }

                let param_ty = self.normalize_associated_types_in(param_ty);
                self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
            }
        }
    }

    fn substs_for_method_call(
        &mut self,
        def_generics: Option<Arc<GenericParams>>,
        generic_args: Option<&GenericArgs>,
        receiver_ty: &Ty,
    ) -> Substs {
        let (parent_param_count, param_count) =
            def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
        let mut substs = Vec::with_capacity(parent_param_count + param_count);
        // Parent arguments are unknown, except for the receiver type
        if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
            for param in &parent_generics.params {
                if param.name == name::SELF_TYPE {
                    substs.push(receiver_ty.clone());
                } else {
                    substs.push(Ty::Unknown);
                }
            }
        }
        // handle provided type arguments
        if let Some(generic_args) = generic_args {
            // if args are provided, it should be all of them, but we can't rely on that
            for arg in generic_args.args.iter().take(param_count) {
                match arg {
                    GenericArg::Type(type_ref) => {
                        let ty = self.make_ty(type_ref);
                        substs.push(ty);
                    }
                }
            }
        };
        let supplied_params = substs.len();
        for _ in supplied_params..parent_param_count + param_count {
            substs.push(Ty::Unknown);
        }
        assert_eq!(substs.len(), parent_param_count + param_count);
        Substs(substs.into())
    }

    fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
        if let Ty::Apply(a_ty) = callable_ty {
            if let TypeCtor::FnDef(def) = a_ty.ctor {
                let generic_predicates = self.db.generic_predicates(def.into());
                for predicate in generic_predicates.iter() {
                    let predicate = predicate.clone().subst(&a_ty.parameters);
                    if let Some(obligation) = Obligation::from_predicate(predicate) {
                        self.obligations.push(obligation);
                    }
                }
                // add obligation for trait implementation, if this is a trait method
                match def {
                    CallableDef::Function(f) => {
                        if let Some(trait_) = f.parent_trait(self.db) {
                            // construct a TraitDef
                            let substs = a_ty.parameters.prefix(
                                trait_.generic_params(self.db).count_params_including_parent(),
                            );
                            self.obligations.push(Obligation::Trait(TraitRef { trait_, substs }));
                        }
                    }
                    CallableDef::Struct(_) | CallableDef::EnumVariant(_) => {}
                }
            }
        }
    }
}