aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir/src/ty/infer/unify.rs
blob: b6ebee3b1b2a1ce35ef626be99161119c44341f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//! Unification and canonicalization logic.

use super::{InferenceContext, Obligation};
use crate::db::HirDatabase;
use crate::ty::{
    Canonical, InEnvironment, InferTy, ProjectionPredicate, ProjectionTy, TraitRef, Ty, TypeWalk,
};

impl<'a, D: HirDatabase> InferenceContext<'a, D> {
    pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b, D>
    where
        'a: 'b,
    {
        Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
    }
}

pub(super) struct Canonicalizer<'a, 'b, D: HirDatabase>
where
    'a: 'b,
{
    ctx: &'b mut InferenceContext<'a, D>,
    free_vars: Vec<InferTy>,
    /// A stack of type variables that is used to detect recursive types (which
    /// are an error, but we need to protect against them to avoid stack
    /// overflows).
    var_stack: Vec<super::TypeVarId>,
}

pub(super) struct Canonicalized<T> {
    pub value: Canonical<T>,
    free_vars: Vec<InferTy>,
}

impl<'a, 'b, D: HirDatabase> Canonicalizer<'a, 'b, D>
where
    'a: 'b,
{
    fn add(&mut self, free_var: InferTy) -> usize {
        self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| {
            let next_index = self.free_vars.len();
            self.free_vars.push(free_var);
            next_index
        })
    }

    fn do_canonicalize_ty(&mut self, ty: Ty) -> Ty {
        ty.fold(&mut |ty| match ty {
            Ty::Infer(tv) => {
                let inner = tv.to_inner();
                if self.var_stack.contains(&inner) {
                    // recursive type
                    return tv.fallback_value();
                }
                if let Some(known_ty) = self.ctx.var_unification_table.probe_value(inner).known() {
                    self.var_stack.push(inner);
                    let result = self.do_canonicalize_ty(known_ty.clone());
                    self.var_stack.pop();
                    result
                } else {
                    let root = self.ctx.var_unification_table.find(inner);
                    let free_var = match tv {
                        InferTy::TypeVar(_) => InferTy::TypeVar(root),
                        InferTy::IntVar(_) => InferTy::IntVar(root),
                        InferTy::FloatVar(_) => InferTy::FloatVar(root),
                        InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
                    };
                    let position = self.add(free_var);
                    Ty::Bound(position as u32)
                }
            }
            _ => ty,
        })
    }

    fn do_canonicalize_trait_ref(&mut self, trait_ref: TraitRef) -> TraitRef {
        let substs = trait_ref
            .substs
            .iter()
            .map(|ty| self.do_canonicalize_ty(ty.clone()))
            .collect::<Vec<_>>();
        TraitRef { trait_: trait_ref.trait_, substs: substs.into() }
    }

    fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
        Canonicalized {
            value: Canonical { value: result, num_vars: self.free_vars.len() },
            free_vars: self.free_vars,
        }
    }

    fn do_canonicalize_projection_ty(&mut self, projection_ty: ProjectionTy) -> ProjectionTy {
        let params = projection_ty
            .parameters
            .iter()
            .map(|ty| self.do_canonicalize_ty(ty.clone()))
            .collect::<Vec<_>>();
        ProjectionTy { associated_ty: projection_ty.associated_ty, parameters: params.into() }
    }

    fn do_canonicalize_projection_predicate(
        &mut self,
        projection: ProjectionPredicate,
    ) -> ProjectionPredicate {
        let ty = self.do_canonicalize_ty(projection.ty);
        let projection_ty = self.do_canonicalize_projection_ty(projection.projection_ty);

        ProjectionPredicate { ty, projection_ty }
    }

    // FIXME: add some point, we need to introduce a `Fold` trait that abstracts
    // over all the things that can be canonicalized (like Chalk and rustc have)

    pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
        let result = self.do_canonicalize_ty(ty);
        self.into_canonicalized(result)
    }

    pub(crate) fn canonicalize_obligation(
        mut self,
        obligation: InEnvironment<Obligation>,
    ) -> Canonicalized<InEnvironment<Obligation>> {
        let result = match obligation.value {
            Obligation::Trait(tr) => Obligation::Trait(self.do_canonicalize_trait_ref(tr)),
            Obligation::Projection(pr) => {
                Obligation::Projection(self.do_canonicalize_projection_predicate(pr))
            }
        };
        self.into_canonicalized(InEnvironment {
            value: result,
            environment: obligation.environment,
        })
    }
}

impl<T> Canonicalized<T> {
    pub fn decanonicalize_ty(&self, ty: Ty) -> Ty {
        ty.fold(&mut |ty| match ty {
            Ty::Bound(idx) => {
                if (idx as usize) < self.free_vars.len() {
                    Ty::Infer(self.free_vars[idx as usize])
                } else {
                    Ty::Bound(idx)
                }
            }
            ty => ty,
        })
    }

    pub fn apply_solution(
        &self,
        ctx: &mut InferenceContext<'_, impl HirDatabase>,
        solution: Canonical<Vec<Ty>>,
    ) {
        // the solution may contain new variables, which we need to convert to new inference vars
        let new_vars =
            (0..solution.num_vars).map(|_| ctx.new_type_var()).collect::<Vec<_>>().into();
        for (i, ty) in solution.value.into_iter().enumerate() {
            let var = self.free_vars[i];
            ctx.unify(&Ty::Infer(var), &ty.subst_bound_vars(&new_vars));
        }
    }
}