1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
|
//! Methods for lowering the HIR to types. There are two main cases here:
//!
//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
//! type: The entry point for this is `Ty::from_hir`.
//! - Building the type for an item: This happens through the `type_for_def` query.
//!
//! This usually involves resolving names, collecting generic arguments etc.
use std::iter;
use std::sync::Arc;
use super::{
FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor,
TypeWalk,
};
use crate::{
adt::VariantDef,
db::HirDatabase,
generics::HasGenericParams,
generics::{GenericDef, WherePredicate},
nameres::Namespace,
path::{GenericArg, PathSegment},
resolve::{Resolver, TypeNs},
ty::Adt,
type_ref::{TypeBound, TypeRef},
BuiltinType, Const, Enum, EnumVariant, Function, ModuleDef, Path, Static, Struct, StructField,
Trait, TypeAlias, Union,
};
impl Ty {
pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
match type_ref {
TypeRef::Never => Ty::simple(TypeCtor::Never),
TypeRef::Tuple(inner) => {
let inner_tys =
inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
Ty::apply(
TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
Substs(inner_tys.into()),
)
}
TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
}
TypeRef::Array(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::apply_one(TypeCtor::Array, inner_ty)
}
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::apply_one(TypeCtor::Slice, inner_ty)
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
TypeRef::Placeholder => Ty::Unknown,
TypeRef::Fn(params) => {
let inner_tys =
params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
let sig = Substs(inner_tys.into());
Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
}
TypeRef::DynTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| {
GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
})
.collect::<Vec<_>>();
Ty::Dyn(predicates.into())
}
TypeRef::ImplTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| {
GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
})
.collect::<Vec<_>>();
Ty::Opaque(predicates.into())
}
TypeRef::Error => Ty::Unknown,
}
}
/// This is only for `generic_predicates_for_param`, where we can't just
/// lower the self types of the predicates since that could lead to cycles.
/// So we just check here if the `type_ref` resolves to a generic param, and which.
fn from_hir_only_param(
db: &impl HirDatabase,
resolver: &Resolver,
type_ref: &TypeRef,
) -> Option<u32> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
if let crate::PathKind::Type(_) = &path.kind {
return None;
}
if path.segments.len() > 1 {
return None;
}
let resolution = match resolver.resolve_path_in_type_ns(db, path) {
Some((it, None)) => it,
_ => return None,
};
if let TypeNs::GenericParam(idx) = resolution {
Some(idx)
} else {
None
}
}
pub(crate) fn from_type_relative_path(
db: &impl HirDatabase,
resolver: &Resolver,
ty: Ty,
remaining_segments: &[PathSegment],
) -> Ty {
if remaining_segments.len() == 1 {
// resolve unselected assoc types
let segment = &remaining_segments[0];
Ty::select_associated_type(db, resolver, ty, segment)
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
ty
}
}
pub(crate) fn from_partly_resolved_hir_path(
db: &impl HirDatabase,
resolver: &Resolver,
resolution: TypeNs,
resolved_segment: &PathSegment,
remaining_segments: &[PathSegment],
) -> Ty {
let ty = match resolution {
TypeNs::Trait(trait_) => {
let trait_ref =
TraitRef::from_resolved_path(db, resolver, trait_, resolved_segment, None);
return if remaining_segments.len() == 1 {
let segment = &remaining_segments[0];
match trait_ref
.trait_
.associated_type_by_name_including_super_traits(db, &segment.name)
{
Some(associated_ty) => {
// FIXME handle type parameters on the segment
Ty::Projection(ProjectionTy {
associated_ty,
parameters: trait_ref.substs,
})
}
None => {
// FIXME: report error (associated type not found)
Ty::Unknown
}
}
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
};
}
TypeNs::GenericParam(idx) => {
// FIXME: maybe return name in resolution?
let name = resolved_segment.name.clone();
Ty::Param { idx, name }
}
TypeNs::SelfType(impl_block) => impl_block.target_ty(db),
TypeNs::Adt(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()),
TypeNs::BuiltinType(it) => {
Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
}
TypeNs::TypeAlias(it) => {
Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
}
// FIXME: report error
TypeNs::EnumVariant(_) => return Ty::Unknown,
};
Ty::from_type_relative_path(db, resolver, ty, remaining_segments)
}
pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty {
// Resolve the path (in type namespace)
if let crate::PathKind::Type(type_ref) = &path.kind {
let ty = Ty::from_hir(db, resolver, &type_ref);
let remaining_segments = &path.segments[..];
return Ty::from_type_relative_path(db, resolver, ty, remaining_segments);
}
let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) {
Some(it) => it,
None => return Ty::Unknown,
};
let (resolved_segment, remaining_segments) = match remaining_index {
None => (
path.segments.last().expect("resolved path has at least one element"),
&[] as &[PathSegment],
),
Some(i) => (&path.segments[i - 1], &path.segments[i..]),
};
Ty::from_partly_resolved_hir_path(
db,
resolver,
resolution,
resolved_segment,
remaining_segments,
)
}
fn select_associated_type(
db: &impl HirDatabase,
resolver: &Resolver,
self_ty: Ty,
segment: &PathSegment,
) -> Ty {
let param_idx = match self_ty {
Ty::Param { idx, .. } => idx,
_ => return Ty::Unknown, // Error: Ambiguous associated type
};
let def = match resolver.generic_def() {
Some(def) => def,
None => return Ty::Unknown, // this can't actually happen
};
let predicates = db.generic_predicates_for_param(def, param_idx);
let traits_from_env = predicates.iter().filter_map(|pred| match pred {
GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
_ => None,
});
let traits = traits_from_env.flat_map(|t| t.all_super_traits(db));
for t in traits {
if let Some(associated_ty) = t.associated_type_by_name(db, &segment.name) {
let substs =
Substs::build_for_def(db, t).push(self_ty.clone()).fill_with_unknown().build();
// FIXME handle type parameters on the segment
return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
}
}
Ty::Unknown
}
fn from_hir_path_inner(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
typable: TypableDef,
) -> Ty {
let ty = db.type_for_def(typable, Namespace::Types);
let substs = Ty::substs_from_path_segment(db, resolver, segment, typable);
ty.subst(&substs)
}
pub(super) fn substs_from_path_segment(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
resolved: TypableDef,
) -> Substs {
let def_generic: Option<GenericDef> = match resolved {
TypableDef::Function(func) => Some(func.into()),
TypableDef::Adt(adt) => Some(adt.into()),
TypableDef::EnumVariant(var) => Some(var.parent_enum(db).into()),
TypableDef::TypeAlias(t) => Some(t.into()),
TypableDef::Const(_) | TypableDef::Static(_) | TypableDef::BuiltinType(_) => None,
};
substs_from_path_segment(db, resolver, segment, def_generic, false)
}
/// Collect generic arguments from a path into a `Substs`. See also
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
pub(super) fn substs_from_path(
db: &impl HirDatabase,
resolver: &Resolver,
path: &Path,
resolved: TypableDef,
) -> Substs {
let last = path.segments.last().expect("path should have at least one segment");
let segment = match resolved {
TypableDef::Function(_)
| TypableDef::Adt(_)
| TypableDef::Const(_)
| TypableDef::Static(_)
| TypableDef::TypeAlias(_)
| TypableDef::BuiltinType(_) => last,
TypableDef::EnumVariant(_) => {
// the generic args for an enum variant may be either specified
// on the segment referring to the enum, or on the segment
// referring to the variant. So `Option::<T>::None` and
// `Option::None::<T>` are both allowed (though the former is
// preferred). See also `def_ids_for_path_segments` in rustc.
let len = path.segments.len();
let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
// Option::<T>::None
&path.segments[len - 2]
} else {
// Option::None::<T>
last
};
segment
}
};
Ty::substs_from_path_segment(db, resolver, segment, resolved)
}
}
pub(super) fn substs_from_path_segment(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
def_generic: Option<GenericDef>,
add_self_param: bool,
) -> Substs {
let mut substs = Vec::new();
let def_generics = def_generic.map(|def| def.generic_params(db));
let (parent_param_count, param_count) =
def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count));
if add_self_param {
// FIXME this add_self_param argument is kind of a hack: Traits have the
// Self type as an implicit first type parameter, but it can't be
// actually provided in the type arguments
// (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
substs.push(Ty::Unknown);
}
if let Some(generic_args) = &segment.args_and_bindings {
// if args are provided, it should be all of them, but we can't rely on that
let self_param_correction = if add_self_param { 1 } else { 0 };
let param_count = param_count - self_param_correction;
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = Ty::from_hir(db, resolver, type_ref);
substs.push(ty);
}
}
}
}
// add placeholders for args that were not provided
let supplied_params = substs.len();
for _ in supplied_params..parent_param_count + param_count {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), parent_param_count + param_count);
// handle defaults
if let Some(def_generic) = def_generic {
let default_substs = db.generic_defaults(def_generic);
assert_eq!(substs.len(), default_substs.len());
for (i, default_ty) in default_substs.iter().enumerate() {
if substs[i] == Ty::Unknown {
substs[i] = default_ty.clone();
}
}
}
Substs(substs.into())
}
impl TraitRef {
pub(crate) fn from_path(
db: &impl HirDatabase,
resolver: &Resolver,
path: &Path,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? {
TypeNs::Trait(tr) => tr,
_ => return None,
};
let segment = path.segments.last().expect("path should have at least one segment");
Some(TraitRef::from_resolved_path(db, resolver, resolved, segment, explicit_self_ty))
}
pub(super) fn from_resolved_path(
db: &impl HirDatabase,
resolver: &Resolver,
resolved: Trait,
segment: &PathSegment,
explicit_self_ty: Option<Ty>,
) -> Self {
let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved);
if let Some(self_ty) = explicit_self_ty {
// FIXME this could be nicer
let mut substs_vec = substs.0.to_vec();
substs_vec[0] = self_ty;
substs.0 = substs_vec.into();
}
TraitRef { trait_: resolved, substs }
}
pub(crate) fn from_hir(
db: &impl HirDatabase,
resolver: &Resolver,
type_ref: &TypeRef,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
TraitRef::from_path(db, resolver, path, explicit_self_ty)
}
fn substs_from_path(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
resolved: Trait,
) -> Substs {
let has_self_param =
segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
substs_from_path_segment(db, resolver, segment, Some(resolved.into()), !has_self_param)
}
pub(crate) fn for_trait(db: &impl HirDatabase, trait_: Trait) -> TraitRef {
let substs = Substs::identity(&trait_.generic_params(db));
TraitRef { trait_, substs }
}
pub(crate) fn from_type_bound(
db: &impl HirDatabase,
resolver: &Resolver,
bound: &TypeBound,
self_ty: Ty,
) -> Option<TraitRef> {
match bound {
TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)),
TypeBound::Error => None,
}
}
}
impl GenericPredicate {
pub(crate) fn from_where_predicate<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
where_predicate: &'a WherePredicate,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref);
GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty)
}
pub(crate) fn from_type_bound<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
bound: &'a TypeBound,
self_ty: Ty,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty);
iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
.chain(
trait_ref.into_iter().flat_map(move |tr| {
assoc_type_bindings_from_type_bound(db, resolver, bound, tr)
}),
)
}
}
fn assoc_type_bindings_from_type_bound<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
bound: &'a TypeBound,
trait_ref: TraitRef,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let last_segment = match bound {
TypeBound::Path(path) => path.segments.last(),
TypeBound::Error => None,
};
last_segment
.into_iter()
.flat_map(|segment| segment.args_and_bindings.iter())
.flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
.map(move |(name, type_ref)| {
let associated_ty =
match trait_ref.trait_.associated_type_by_name_including_super_traits(db, &name) {
None => return GenericPredicate::Error,
Some(t) => t,
};
let projection_ty =
ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
let ty = Ty::from_hir(db, resolver, type_ref);
let projection_predicate = ProjectionPredicate { projection_ty, ty };
GenericPredicate::Projection(projection_predicate)
})
}
/// Build the declared type of an item. This depends on the namespace; e.g. for
/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
/// the constructor function `(usize) -> Foo` which lives in the values
/// namespace.
pub(crate) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty {
match (def, ns) {
(TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f),
(TypableDef::Adt(Adt::Struct(s)), Namespace::Values) => type_for_struct_constructor(db, s),
(TypableDef::Adt(adt), Namespace::Types) => type_for_adt(db, adt),
(TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v),
(TypableDef::TypeAlias(t), Namespace::Types) => type_for_type_alias(db, t),
(TypableDef::Const(c), Namespace::Values) => type_for_const(db, c),
(TypableDef::Static(c), Namespace::Values) => type_for_static(db, c),
(TypableDef::BuiltinType(t), Namespace::Types) => type_for_builtin(t),
// 'error' cases:
(TypableDef::Function(_), Namespace::Types) => Ty::Unknown,
(TypableDef::Adt(Adt::Union(_)), Namespace::Values) => Ty::Unknown,
(TypableDef::Adt(Adt::Enum(_)), Namespace::Values) => Ty::Unknown,
(TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown,
(TypableDef::TypeAlias(_), Namespace::Values) => Ty::Unknown,
(TypableDef::Const(_), Namespace::Types) => Ty::Unknown,
(TypableDef::Static(_), Namespace::Types) => Ty::Unknown,
(TypableDef::BuiltinType(_), Namespace::Values) => Ty::Unknown,
}
}
/// Build the signature of a callable item (function, struct or enum variant).
pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
match def {
CallableDef::Function(f) => fn_sig_for_fn(db, f),
CallableDef::Struct(s) => fn_sig_for_struct_constructor(db, s),
CallableDef::EnumVariant(e) => fn_sig_for_enum_variant_constructor(db, e),
}
}
/// Build the type of a specific field of a struct or enum variant.
pub(crate) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty {
let parent_def = field.parent_def(db);
let resolver = match parent_def {
VariantDef::Struct(it) => it.resolver(db),
VariantDef::EnumVariant(it) => it.parent_enum(db).resolver(db),
};
let var_data = parent_def.variant_data(db);
let type_ref = &var_data.fields().unwrap()[field.id].type_ref;
Ty::from_hir(db, &resolver, type_ref)
}
/// This query exists only to be used when resolving short-hand associated types
/// like `T::Item`.
///
/// See the analogous query in rustc and its comment:
/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
pub(crate) fn generic_predicates_for_param_query(
db: &impl HirDatabase,
def: GenericDef,
param_idx: u32,
) -> Arc<[GenericPredicate]> {
let resolver = def.resolver(db);
let predicates = resolver
.where_predicates_in_scope()
// we have to filter out all other predicates *first*, before attempting to lower them
.filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx))
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
.collect::<Vec<_>>();
predicates.into()
}
pub(crate) fn trait_env(
db: &impl HirDatabase,
resolver: &Resolver,
) -> Arc<super::TraitEnvironment> {
let predicates = resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
.collect::<Vec<_>>();
Arc::new(super::TraitEnvironment { predicates })
}
/// Resolve the where clause(s) of an item with generics.
pub(crate) fn generic_predicates_query(
db: &impl HirDatabase,
def: GenericDef,
) -> Arc<[GenericPredicate]> {
let resolver = def.resolver(db);
let predicates = resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
.collect::<Vec<_>>();
predicates.into()
}
/// Resolve the default type params from generics
pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDef) -> Substs {
let resolver = def.resolver(db);
let generic_params = def.generic_params(db);
let defaults = generic_params
.params_including_parent()
.into_iter()
.map(|p| {
p.default.as_ref().map_or(Ty::Unknown, |path| Ty::from_hir_path(db, &resolver, path))
})
.collect::<Vec<_>>();
Substs(defaults.into())
}
fn fn_sig_for_fn(db: &impl HirDatabase, def: Function) -> FnSig {
let data = def.data(db);
let resolver = def.resolver(db);
let params = data.params().iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
let ret = Ty::from_hir(db, &resolver, data.ret_type());
FnSig::from_params_and_return(params, ret)
}
/// Build the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty {
let generics = def.generic_params(db);
let substs = Substs::identity(&generics);
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
/// Build the declared type of a const.
fn type_for_const(db: &impl HirDatabase, def: Const) -> Ty {
let data = def.data(db);
let resolver = def.resolver(db);
Ty::from_hir(db, &resolver, data.type_ref())
}
/// Build the declared type of a static.
fn type_for_static(db: &impl HirDatabase, def: Static) -> Ty {
let data = def.data(db);
let resolver = def.resolver(db);
Ty::from_hir(db, &resolver, data.type_ref())
}
/// Build the declared type of a static.
fn type_for_builtin(def: BuiltinType) -> Ty {
Ty::simple(match def {
BuiltinType::Char => TypeCtor::Char,
BuiltinType::Bool => TypeCtor::Bool,
BuiltinType::Str => TypeCtor::Str,
BuiltinType::Int(ty) => TypeCtor::Int(ty.into()),
BuiltinType::Float(ty) => TypeCtor::Float(ty.into()),
})
}
fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> FnSig {
let var_data = def.variant_data(db);
let fields = match var_data.fields() {
Some(fields) => fields,
None => panic!("fn_sig_for_struct_constructor called on unit struct"),
};
let resolver = def.resolver(db);
let params = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
let ret = type_for_adt(db, def);
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple struct constructor.
fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty {
let var_data = def.variant_data(db);
if var_data.fields().is_none() {
return type_for_adt(db, def); // Unit struct
}
let generics = def.generic_params(db);
let substs = Substs::identity(&generics);
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> FnSig {
let var_data = def.variant_data(db);
let fields = match var_data.fields() {
Some(fields) => fields,
None => panic!("fn_sig_for_enum_variant_constructor called for unit variant"),
};
let resolver = def.parent_enum(db).resolver(db);
let params = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
let generics = def.parent_enum(db).generic_params(db);
let substs = Substs::identity(&generics);
let ret = type_for_adt(db, def.parent_enum(db)).subst(&substs);
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple enum variant constructor.
fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty {
let var_data = def.variant_data(db);
if var_data.fields().is_none() {
return type_for_adt(db, def.parent_enum(db)); // Unit variant
}
let generics = def.parent_enum(db).generic_params(db);
let substs = Substs::identity(&generics);
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
fn type_for_adt(db: &impl HirDatabase, adt: impl Into<Adt> + HasGenericParams) -> Ty {
let generics = adt.generic_params(db);
Ty::apply(TypeCtor::Adt(adt.into()), Substs::identity(&generics))
}
fn type_for_type_alias(db: &impl HirDatabase, t: TypeAlias) -> Ty {
let generics = t.generic_params(db);
let resolver = t.resolver(db);
let type_ref = t.type_ref(db);
let substs = Substs::identity(&generics);
let inner = Ty::from_hir(db, &resolver, &type_ref.unwrap_or(TypeRef::Error));
inner.subst(&substs)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum TypableDef {
Function(Function),
Adt(Adt),
EnumVariant(EnumVariant),
TypeAlias(TypeAlias),
Const(Const),
Static(Static),
BuiltinType(BuiltinType),
}
impl_froms!(
TypableDef: Function,
Adt(Struct, Enum, Union),
EnumVariant,
TypeAlias,
Const,
Static,
BuiltinType
);
impl From<ModuleDef> for Option<TypableDef> {
fn from(def: ModuleDef) -> Option<TypableDef> {
let res = match def {
ModuleDef::Function(f) => f.into(),
ModuleDef::Adt(adt) => adt.into(),
ModuleDef::EnumVariant(v) => v.into(),
ModuleDef::TypeAlias(t) => t.into(),
ModuleDef::Const(v) => v.into(),
ModuleDef::Static(v) => v.into(),
ModuleDef::BuiltinType(t) => t.into(),
ModuleDef::Module(_) | ModuleDef::Trait(_) => return None,
};
Some(res)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum CallableDef {
Function(Function),
Struct(Struct),
EnumVariant(EnumVariant),
}
impl_froms!(CallableDef: Function, Struct, EnumVariant);
impl CallableDef {
pub fn krate(self, db: &impl HirDatabase) -> Option<crate::Crate> {
match self {
CallableDef::Function(f) => f.krate(db),
CallableDef::Struct(s) => s.krate(db),
CallableDef::EnumVariant(e) => e.parent_enum(db).krate(db),
}
}
}
impl From<CallableDef> for GenericDef {
fn from(def: CallableDef) -> GenericDef {
match def {
CallableDef::Function(f) => f.into(),
CallableDef::Struct(s) => s.into(),
CallableDef::EnumVariant(e) => e.into(),
}
}
}
|