1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
//! Methods for lowering the HIR to types. There are two main cases here:
//!
//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
//! type: The entry point for this is `Ty::from_hir`.
//! - Building the type for an item: This happens through the `type_for_def` query.
//!
//! This usually involves resolving names, collecting generic arguments etc.
use std::sync::Arc;
use crate::{
Function, Struct, StructField, Enum, EnumVariant, Path, Name,
ModuleDef,
HirDatabase,
type_ref::TypeRef,
name::KnownName,
nameres::Namespace,
resolve::{Resolver, Resolution},
path::{ PathSegment, GenericArg},
generics::GenericParams,
adt::VariantDef,
};
use super::{Ty, primitive, FnSig, Substs};
impl Ty {
pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
match type_ref {
TypeRef::Never => Ty::Never,
TypeRef::Tuple(inner) => {
let inner_tys =
inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
Ty::Tuple(inner_tys.into())
}
TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::RawPtr(Arc::new(inner_ty), *mutability)
}
TypeRef::Array(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::Array(Arc::new(inner_ty))
}
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::Slice(Arc::new(inner_ty))
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(db, resolver, inner);
Ty::Ref(Arc::new(inner_ty), *mutability)
}
TypeRef::Placeholder => Ty::Unknown,
TypeRef::Fn(params) => {
let mut inner_tys =
params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect::<Vec<_>>();
let return_ty =
inner_tys.pop().expect("TypeRef::Fn should always have at least return type");
let sig = FnSig { input: inner_tys, output: return_ty };
Ty::FnPtr(Arc::new(sig))
}
TypeRef::Error => Ty::Unknown,
}
}
pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Self {
if let Some(name) = path.as_ident() {
// TODO handle primitive type names in resolver as well?
if let Some(int_ty) = primitive::UncertainIntTy::from_name(name) {
return Ty::Int(int_ty);
} else if let Some(float_ty) = primitive::UncertainFloatTy::from_name(name) {
return Ty::Float(float_ty);
} else if let Some(known) = name.as_known_name() {
match known {
KnownName::Bool => return Ty::Bool,
KnownName::Char => return Ty::Char,
KnownName::Str => return Ty::Str,
_ => {}
}
}
}
// Resolve the path (in type namespace)
let resolution = resolver.resolve_path(db, path).take_types();
let def = match resolution {
Some(Resolution::Def(def)) => def,
Some(Resolution::LocalBinding(..)) => {
// this should never happen
panic!("path resolved to local binding in type ns");
}
Some(Resolution::GenericParam(idx)) => {
return Ty::Param {
idx,
// TODO: maybe return name in resolution?
name: path
.as_ident()
.expect("generic param should be single-segment path")
.clone(),
};
}
Some(Resolution::SelfType(impl_block)) => {
return impl_block.target_ty(db);
}
None => return Ty::Unknown,
};
let typable: TypableDef = match def.into() {
None => return Ty::Unknown,
Some(it) => it,
};
let ty = db.type_for_def(typable, Namespace::Types);
let substs = Ty::substs_from_path(db, resolver, path, typable);
ty.apply_substs(substs)
}
pub(super) fn substs_from_path_segment(
db: &impl HirDatabase,
resolver: &Resolver,
segment: &PathSegment,
resolved: TypableDef,
) -> Substs {
let mut substs = Vec::new();
let def_generics = match resolved {
TypableDef::Function(func) => func.generic_params(db),
TypableDef::Struct(s) => s.generic_params(db),
TypableDef::Enum(e) => e.generic_params(db),
TypableDef::EnumVariant(var) => var.parent_enum(db).generic_params(db),
};
let parent_param_count = def_generics.count_parent_params();
substs.extend((0..parent_param_count).map(|_| Ty::Unknown));
if let Some(generic_args) = &segment.args_and_bindings {
// if args are provided, it should be all of them, but we can't rely on that
let param_count = def_generics.params.len();
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = Ty::from_hir(db, resolver, type_ref);
substs.push(ty);
}
}
}
}
// add placeholders for args that were not provided
// TODO: handle defaults
let supplied_params = substs.len();
for _ in supplied_params..def_generics.count_params_including_parent() {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), def_generics.count_params_including_parent());
Substs(substs.into())
}
/// Collect generic arguments from a path into a `Substs`. See also
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
pub(super) fn substs_from_path(
db: &impl HirDatabase,
resolver: &Resolver,
path: &Path,
resolved: TypableDef,
) -> Substs {
let last = path.segments.last().expect("path should have at least one segment");
let segment = match resolved {
TypableDef::Function(_) => last,
TypableDef::Struct(_) => last,
TypableDef::Enum(_) => last,
TypableDef::EnumVariant(_) => {
// the generic args for an enum variant may be either specified
// on the segment referring to the enum, or on the segment
// referring to the variant. So `Option::<T>::None` and
// `Option::None::<T>` are both allowed (though the former is
// preferred). See also `def_ids_for_path_segments` in rustc.
let len = path.segments.len();
let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
// Option::<T>::None
&path.segments[len - 2]
} else {
// Option::None::<T>
last
};
segment
}
};
Ty::substs_from_path_segment(db, resolver, segment, resolved)
}
}
/// Build the declared type of an item. This depends on the namespace; e.g. for
/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
/// the constructor function `(usize) -> Foo` which lives in the values
/// namespace.
pub(crate) fn type_for_def(db: &impl HirDatabase, def: TypableDef, ns: Namespace) -> Ty {
match (def, ns) {
(TypableDef::Function(f), Namespace::Values) => type_for_fn(db, f),
(TypableDef::Struct(s), Namespace::Types) => type_for_struct(db, s),
(TypableDef::Struct(s), Namespace::Values) => type_for_struct_constructor(db, s),
(TypableDef::Enum(e), Namespace::Types) => type_for_enum(db, e),
(TypableDef::EnumVariant(v), Namespace::Values) => type_for_enum_variant_constructor(db, v),
// 'error' cases:
(TypableDef::Function(_), Namespace::Types) => Ty::Unknown,
(TypableDef::Enum(_), Namespace::Values) => Ty::Unknown,
(TypableDef::EnumVariant(_), Namespace::Types) => Ty::Unknown,
}
}
/// Build the type of a specific field of a struct or enum variant.
pub(crate) fn type_for_field(db: &impl HirDatabase, field: StructField) -> Ty {
let parent_def = field.parent_def(db);
let resolver = match parent_def {
VariantDef::Struct(it) => it.resolver(db),
VariantDef::EnumVariant(it) => it.parent_enum(db).resolver(db),
};
let var_data = parent_def.variant_data(db);
let type_ref = &var_data.fields().unwrap()[field.id].type_ref;
Ty::from_hir(db, &resolver, type_ref)
}
/// Build the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &impl HirDatabase, def: Function) -> Ty {
let signature = def.signature(db);
let resolver = def.resolver(db);
let generics = def.generic_params(db);
let name = def.name(db);
let input =
signature.params().iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
let output = Ty::from_hir(db, &resolver, signature.ret_type());
let sig = Arc::new(FnSig { input, output });
let substs = make_substs(&generics);
Ty::FnDef { def: def.into(), sig, name, substs }
}
/// Build the type of a tuple struct constructor.
fn type_for_struct_constructor(db: &impl HirDatabase, def: Struct) -> Ty {
let var_data = def.variant_data(db);
let fields = match var_data.fields() {
Some(fields) => fields,
None => return type_for_struct(db, def), // Unit struct
};
let resolver = def.resolver(db);
let generics = def.generic_params(db);
let name = def.name(db).unwrap_or_else(Name::missing);
let input = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
let output = type_for_struct(db, def);
let sig = Arc::new(FnSig { input, output });
let substs = make_substs(&generics);
Ty::FnDef { def: def.into(), sig, name, substs }
}
/// Build the type of a tuple enum variant constructor.
fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariant) -> Ty {
let var_data = def.variant_data(db);
let fields = match var_data.fields() {
Some(fields) => fields,
None => return type_for_enum(db, def.parent_enum(db)), // Unit variant
};
let resolver = def.parent_enum(db).resolver(db);
let generics = def.parent_enum(db).generic_params(db);
let name = def.name(db).unwrap_or_else(Name::missing);
let input = fields
.iter()
.map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
.collect::<Vec<_>>();
let substs = make_substs(&generics);
let output = type_for_enum(db, def.parent_enum(db)).apply_substs(substs.clone());
let sig = Arc::new(FnSig { input, output });
Ty::FnDef { def: def.into(), sig, name, substs }
}
fn make_substs(generics: &GenericParams) -> Substs {
Substs(
generics
.params_including_parent()
.into_iter()
.map(|p| Ty::Param { idx: p.idx, name: p.name.clone() })
.collect::<Vec<_>>()
.into(),
)
}
fn type_for_struct(db: &impl HirDatabase, s: Struct) -> Ty {
let generics = s.generic_params(db);
Ty::Adt {
def_id: s.into(),
name: s.name(db).unwrap_or_else(Name::missing),
substs: make_substs(&generics),
}
}
fn type_for_enum(db: &impl HirDatabase, s: Enum) -> Ty {
let generics = s.generic_params(db);
Ty::Adt {
def_id: s.into(),
name: s.name(db).unwrap_or_else(Name::missing),
substs: make_substs(&generics),
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum TypableDef {
Function(Function),
Struct(Struct),
Enum(Enum),
EnumVariant(EnumVariant),
}
impl_froms!(TypableDef: Function, Struct, Enum, EnumVariant);
impl From<ModuleDef> for Option<TypableDef> {
fn from(def: ModuleDef) -> Option<TypableDef> {
let res = match def {
ModuleDef::Function(f) => f.into(),
ModuleDef::Struct(s) => s.into(),
ModuleDef::Enum(e) => e.into(),
ModuleDef::EnumVariant(v) => v.into(),
ModuleDef::Const(_)
| ModuleDef::Static(_)
| ModuleDef::Module(_)
| ModuleDef::Trait(_)
| ModuleDef::Type(_) => return None,
};
Some(res)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum CallableDef {
Function(Function),
Struct(Struct),
EnumVariant(EnumVariant),
}
impl_froms!(CallableDef: Function, Struct, EnumVariant);
|