1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::sync::Arc;
use arrayvec::ArrayVec;
use hir_def::CrateModuleId;
use rustc_hash::FxHashMap;
use super::{autoderef, lower, Canonical, InEnvironment, TraitEnvironment, TraitRef};
use crate::{
db::HirDatabase,
impl_block::{ImplBlock, ImplId},
resolve::Resolver,
ty::primitive::{FloatBitness, UncertainFloatTy, UncertainIntTy},
ty::{Ty, TypeCtor},
AssocItem, Crate, Function, Module, Mutability, Name, Trait,
};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
Apply(TypeCtor),
}
impl TyFingerprint {
/// Creates a TyFingerprint for looking up an impl. Only certain types can
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
/// `impl &S`. Hence, this will return `None` for reference types and such.
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
match ty {
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
_ => None,
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct CrateImplBlocks {
/// To make sense of the CrateModuleIds, we need the source root.
krate: Crate,
impls: FxHashMap<TyFingerprint, Vec<(CrateModuleId, ImplId)>>,
impls_by_trait: FxHashMap<Trait, Vec<(CrateModuleId, ImplId)>>,
}
impl CrateImplBlocks {
pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + 'a {
let fingerprint = TyFingerprint::for_impl(ty);
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module::new(self.krate, *module_id);
ImplBlock::from_id(module, *impl_id)
},
)
}
pub fn lookup_impl_blocks_for_trait<'a>(
&'a self,
tr: Trait,
) -> impl Iterator<Item = ImplBlock> + 'a {
self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module::new(self.krate, *module_id);
ImplBlock::from_id(module, *impl_id)
},
)
}
pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplBlock> + 'a {
self.impls.values().chain(self.impls_by_trait.values()).flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module::new(self.krate, *module_id);
ImplBlock::from_id(module, *impl_id)
},
)
}
fn collect_recursive(&mut self, db: &impl HirDatabase, module: Module) {
let module_impl_blocks = db.impls_in_module(module);
for (impl_id, _) in module_impl_blocks.impls.iter() {
let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id);
let target_ty = impl_block.target_ty(db);
if impl_block.target_trait(db).is_some() {
if let Some(tr) = impl_block.target_trait_ref(db) {
self.impls_by_trait
.entry(tr.trait_)
.or_insert_with(Vec::new)
.push((module.id.module_id, impl_id));
}
} else {
if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
self.impls
.entry(target_ty_fp)
.or_insert_with(Vec::new)
.push((module.id.module_id, impl_id));
}
}
}
for child in module.children(db) {
self.collect_recursive(db, child);
}
}
pub(crate) fn impls_in_crate_query(
db: &impl HirDatabase,
krate: Crate,
) -> Arc<CrateImplBlocks> {
let mut crate_impl_blocks = CrateImplBlocks {
krate,
impls: FxHashMap::default(),
impls_by_trait: FxHashMap::default(),
};
if let Some(module) = krate.root_module(db) {
crate_impl_blocks.collect_recursive(db, module);
}
Arc::new(crate_impl_blocks)
}
}
fn def_crates(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option<ArrayVec<[Crate; 2]>> {
// Types like slice can have inherent impls in several crates, (core and alloc).
// The corresponding impls are marked with lang items, so we can use them to find the required crates.
macro_rules! lang_item_crate {
($db:expr, $cur_crate:expr, $($name:expr),+ $(,)?) => {{
let mut v = ArrayVec::<[Crate; 2]>::new();
$(
v.extend($db.lang_item($cur_crate, $name.into()).and_then(|item| item.krate($db)));
)+
Some(v)
}};
}
match ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Adt(def_id) => Some(std::iter::once(def_id.krate(db)?).collect()),
TypeCtor::Bool => lang_item_crate!(db, cur_crate, "bool"),
TypeCtor::Char => lang_item_crate!(db, cur_crate, "char"),
TypeCtor::Float(UncertainFloatTy::Known(f)) => match f.bitness {
// There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
FloatBitness::X32 => lang_item_crate!(db, cur_crate, "f32", "f32_runtime"),
FloatBitness::X64 => lang_item_crate!(db, cur_crate, "f64", "f64_runtime"),
},
TypeCtor::Int(UncertainIntTy::Known(i)) => {
lang_item_crate!(db, cur_crate, i.ty_to_string())
}
TypeCtor::Str => lang_item_crate!(db, cur_crate, "str_alloc", "str"),
TypeCtor::Slice => lang_item_crate!(db, cur_crate, "slice_alloc", "slice"),
TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!(db, cur_crate, "const_ptr"),
TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!(db, cur_crate, "mut_ptr"),
_ => None,
},
_ => None,
}
}
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub(crate) fn lookup_method(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: &Name,
resolver: &Resolver,
) -> Option<(Ty, Function)> {
iterate_method_candidates(ty, db, resolver, Some(name), |ty, f| Some((ty.clone(), f)))
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub(crate) fn iterate_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
let krate = resolver.krate()?;
for derefed_ty in autoderef::autoderef(db, resolver, ty.clone()) {
if let Some(result) = iterate_inherent_methods(&derefed_ty, db, name, krate, &mut callback)
{
return Some(result);
}
if let Some(result) =
iterate_trait_method_candidates(&derefed_ty, db, resolver, name, &mut callback)
{
return Some(result);
}
}
None
}
fn iterate_trait_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
let krate = resolver.krate()?;
// FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that)
let env = lower::trait_env(db, resolver);
// if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
let inherent_trait = ty.value.inherent_trait().into_iter();
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
let traits_from_env = env
.trait_predicates_for_self_ty(&ty.value)
.map(|tr| tr.trait_)
.flat_map(|t| t.all_super_traits(db));
let traits = inherent_trait.chain(traits_from_env).chain(resolver.traits_in_scope(db));
'traits: for t in traits {
let data = t.trait_data(db);
// FIXME this is a bit of a hack, since Chalk should say the same thing
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
let inherently_implemented = ty.value.inherent_trait() == Some(t);
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = inherently_implemented;
for item in data.items() {
if let AssocItem::Function(m) = *item {
let data = m.data(db);
if name.map_or(true, |name| data.name() == name) && data.has_self_param() {
if !known_implemented {
let goal = generic_implements_goal(db, env.clone(), t, ty.clone());
if db.trait_solve(krate, goal).is_none() {
continue 'traits;
}
}
known_implemented = true;
if let Some(result) = callback(&ty.value, m) {
return Some(result);
}
}
}
}
}
None
}
fn iterate_inherent_methods<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: Option<&Name>,
krate: Crate,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
for krate in def_crates(db, krate, &ty.value)? {
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&ty.value) {
for item in impl_block.items(db) {
if let AssocItem::Function(f) = item {
let data = f.data(db);
if name.map_or(true, |name| data.name() == name) && data.has_self_param() {
if let Some(result) = callback(&ty.value, f) {
return Some(result);
}
}
}
}
}
}
None
}
pub(crate) fn implements_trait(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
krate: Crate,
trait_: Trait,
) -> bool {
if ty.value.inherent_trait() == Some(trait_) {
// FIXME this is a bit of a hack, since Chalk should say the same thing
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
return true;
}
let env = lower::trait_env(db, resolver);
let goal = generic_implements_goal(db, env, trait_, ty.clone());
let solution = db.trait_solve(krate, goal);
solution.is_some()
}
impl Ty {
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_impl_items<T>(
self,
db: &impl HirDatabase,
krate: Crate,
mut callback: impl FnMut(AssocItem) -> Option<T>,
) -> Option<T> {
for krate in def_crates(db, krate, &self)? {
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&self) {
for item in impl_block.items(db) {
if let Some(result) = callback(item) {
return Some(result);
}
}
}
}
None
}
}
/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters, to query Chalk with it.
fn generic_implements_goal(
db: &impl HirDatabase,
env: Arc<TraitEnvironment>,
trait_: Trait,
self_ty: Canonical<Ty>,
) -> Canonical<InEnvironment<super::Obligation>> {
let num_vars = self_ty.num_vars;
let substs = super::Substs::build_for_def(db, trait_)
.push(self_ty.value)
.fill_with_bound_vars(num_vars as u32)
.build();
let num_vars = substs.len() - 1 + self_ty.num_vars;
let trait_ref = TraitRef { trait_, substs };
let obligation = super::Obligation::Trait(trait_ref);
Canonical { num_vars, value: InEnvironment::new(env, obligation) }
}
|