1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::sync::Arc;
use rustc_hash::FxHashMap;
use crate::{
HirDatabase, module_tree::ModuleId, Module, Crate, Name, Function, Trait,
ids::TraitId,
impl_block::{ImplId, ImplBlock, ImplItem},
ty::{AdtDef, Ty},
};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
Adt(AdtDef), // we'll also want to index impls for primitive types etc.
}
impl TyFingerprint {
/// Creates a TyFingerprint for looking up an impl. Only certain types can
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
/// `impl &S`. Hence, this will return `None` for reference types and such.
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
match ty {
Ty::Adt { def_id, .. } => Some(TyFingerprint::Adt(*def_id)),
_ => None,
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct CrateImplBlocks {
/// To make sense of the ModuleIds, we need the source root.
krate: Crate,
impls: FxHashMap<TyFingerprint, Vec<(ModuleId, ImplId)>>,
impls_by_trait: FxHashMap<TraitId, Vec<(ModuleId, ImplId)>>,
}
impl CrateImplBlocks {
pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + 'a {
let fingerprint = TyFingerprint::for_impl(ty);
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module { krate: self.krate, module_id: *module_id };
ImplBlock::from_id(module, *impl_id)
},
)
}
pub fn lookup_impl_blocks_for_trait<'a>(
&'a self,
tr: &Trait,
) -> impl Iterator<Item = ImplBlock> + 'a {
let id = tr.id;
self.impls_by_trait.get(&id).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module { krate: self.krate, module_id: *module_id };
ImplBlock::from_id(module, *impl_id)
},
)
}
fn collect_recursive(&mut self, db: &impl HirDatabase, module: &Module) {
let module_impl_blocks = db.impls_in_module(module.clone());
for (impl_id, _) in module_impl_blocks.impls.iter() {
let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id);
let target_ty = impl_block.target_ty(db);
if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
self.impls
.entry(target_ty_fp)
.or_insert_with(Vec::new)
.push((module.module_id, impl_id));
}
if let Some(tr) = impl_block.target_trait(db) {
self.impls_by_trait
.entry(tr.id)
.or_insert_with(Vec::new)
.push((module.module_id, impl_id));
}
}
for child in module.children(db) {
self.collect_recursive(db, &child);
}
}
pub(crate) fn impls_in_crate_query(
db: &impl HirDatabase,
krate: Crate,
) -> Arc<CrateImplBlocks> {
let mut crate_impl_blocks = CrateImplBlocks {
krate,
impls: FxHashMap::default(),
impls_by_trait: FxHashMap::default(),
};
if let Some(module) = krate.root_module(db) {
crate_impl_blocks.collect_recursive(db, &module);
}
Arc::new(crate_impl_blocks)
}
}
fn def_crate(db: &impl HirDatabase, ty: &Ty) -> Option<Crate> {
match ty {
Ty::Adt { def_id, .. } => def_id.krate(db),
_ => None,
}
}
impl Ty {
// TODO: cache this as a query?
// - if so, what signature? (TyFingerprint, Name)?
// - or maybe cache all names and def_ids of methods per fingerprint?
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub fn lookup_method(self, db: &impl HirDatabase, name: &Name) -> Option<(Ty, Function)> {
self.iterate_methods(db, |ty, f| {
let sig = f.signature(db);
if sig.name() == name && sig.has_self_param() {
Some((ty.clone(), f))
} else {
None
}
})
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_methods<T>(
self,
db: &impl HirDatabase,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
for derefed_ty in self.autoderef(db) {
let krate = match def_crate(db, &derefed_ty) {
Some(krate) => krate,
None => continue,
};
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&derefed_ty) {
for item in impl_block.items(db) {
match item {
ImplItem::Method(f) => {
if let Some(result) = callback(&derefed_ty, f) {
return Some(result);
}
}
_ => {}
}
}
}
}
None
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_impl_items<T>(
self,
db: &impl HirDatabase,
mut callback: impl FnMut(ImplItem) -> Option<T>,
) -> Option<T> {
let krate = def_crate(db, &self)?;
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&self) {
for item in impl_block.items(db) {
if let Some(result) = callback(item) {
return Some(result);
}
}
}
None
}
}
|