1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
//! Trait solving using Chalk.
use std::sync::Arc;
use chalk_ir::cast::Cast;
use log::debug;
use parking_lot::Mutex;
use ra_prof::profile;
use rustc_hash::FxHashSet;
use super::{Canonical, GenericPredicate, ProjectionTy, TraitRef, Ty};
use crate::{db::HirDatabase, Crate, ImplBlock, Trait};
use self::chalk::{from_chalk, ToChalk};
pub(crate) mod chalk;
pub(crate) type Solver = chalk_solve::Solver;
/// This controls the maximum size of types Chalk considers. If we set this too
/// high, we can run into slow edge cases; if we set it too low, Chalk won't
/// find some solutions.
const CHALK_SOLVER_MAX_SIZE: usize = 4;
#[derive(Debug, Copy, Clone)]
struct ChalkContext<'a, DB> {
db: &'a DB,
krate: Crate,
}
pub(crate) fn solver_query(_db: &impl HirDatabase, _krate: Crate) -> Arc<Mutex<Solver>> {
// krate parameter is just so we cache a unique solver per crate
let solver_choice = chalk_solve::SolverChoice::SLG { max_size: CHALK_SOLVER_MAX_SIZE };
debug!("Creating new solver for crate {:?}", _krate);
Arc::new(Mutex::new(solver_choice.into_solver()))
}
/// Collects impls for the given trait in the whole dependency tree of `krate`.
pub(crate) fn impls_for_trait_query(
db: &impl HirDatabase,
krate: Crate,
trait_: Trait,
) -> Arc<[ImplBlock]> {
let mut impls = FxHashSet::default();
// We call the query recursively here. On the one hand, this means we can
// reuse results from queries for different crates; on the other hand, this
// will only ever get called for a few crates near the root of the tree (the
// ones the user is editing), so this may actually be a waste of memory. I'm
// doing it like this mainly for simplicity for now.
for dep in krate.dependencies(db) {
impls.extend(db.impls_for_trait(dep.krate, trait_).iter());
}
let crate_impl_blocks = db.impls_in_crate(krate);
impls.extend(crate_impl_blocks.lookup_impl_blocks_for_trait(trait_));
impls.into_iter().collect::<Vec<_>>().into()
}
fn solve(
db: &impl HirDatabase,
krate: Crate,
goal: &chalk_ir::UCanonical<chalk_ir::InEnvironment<chalk_ir::Goal>>,
) -> Option<chalk_solve::Solution> {
let context = ChalkContext { db, krate };
let solver = db.solver(krate);
debug!("solve goal: {:?}", goal);
let solution = solver.lock().solve_with_fuel(&context, goal, Some(1000));
debug!("solve({:?}) => {:?}", goal, solution);
solution
}
/// Something that needs to be proven (by Chalk) during type checking, e.g. that
/// a certain type implements a certain trait. Proving the Obligation might
/// result in additional information about inference variables.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum Obligation {
/// Prove that a certain type implements a trait (the type is the `Self` type
/// parameter to the `TraitRef`).
Trait(TraitRef),
// Projection(ProjectionPredicate),
}
impl Obligation {
pub fn from_predicate(predicate: GenericPredicate) -> Option<Obligation> {
match predicate {
GenericPredicate::Implemented(trait_ref) => Some(Obligation::Trait(trait_ref)),
GenericPredicate::Error => None,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct ProjectionPredicate {
pub projection_ty: ProjectionTy,
pub ty: Ty,
}
/// Check using Chalk whether trait is implemented for given parameters including `Self` type.
pub(crate) fn implements_query(
db: &impl HirDatabase,
krate: Crate,
trait_ref: Canonical<TraitRef>,
) -> Option<Solution> {
let _p = profile("implements_query");
let goal: chalk_ir::Goal = trait_ref.value.to_chalk(db).cast();
debug!("goal: {:?}", goal);
let env = chalk_ir::Environment::new();
let in_env = chalk_ir::InEnvironment::new(&env, goal);
let parameter = chalk_ir::ParameterKind::Ty(chalk_ir::UniverseIndex::ROOT);
let canonical =
chalk_ir::Canonical { value: in_env, binders: vec![parameter; trait_ref.num_vars] };
// We currently don't deal with universes (I think / hope they're not yet
// relevant for our use cases?)
let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 };
let solution = solve(db, krate, &u_canonical);
solution.map(|solution| solution_from_chalk(db, solution))
}
pub(crate) fn normalize_query(
db: &impl HirDatabase,
krate: Crate,
projection: Canonical<ProjectionPredicate>,
) -> Option<Solution> {
let goal: chalk_ir::Goal = chalk_ir::Normalize {
projection: projection.value.projection_ty.to_chalk(db),
ty: projection.value.ty.to_chalk(db),
}
.cast();
debug!("goal: {:?}", goal);
// FIXME unify with `implements`
let env = chalk_ir::Environment::new();
let in_env = chalk_ir::InEnvironment::new(&env, goal);
let parameter = chalk_ir::ParameterKind::Ty(chalk_ir::UniverseIndex::ROOT);
let canonical =
chalk_ir::Canonical { value: in_env, binders: vec![parameter; projection.num_vars] };
// We currently don't deal with universes (I think / hope they're not yet
// relevant for our use cases?)
let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 };
let solution = solve(db, krate, &u_canonical);
solution.map(|solution| solution_from_chalk(db, solution))
}
fn solution_from_chalk(db: &impl HirDatabase, solution: chalk_solve::Solution) -> Solution {
let convert_subst = |subst: chalk_ir::Canonical<chalk_ir::Substitution>| {
let value = subst
.value
.parameters
.into_iter()
.map(|p| {
let ty = match p {
chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty),
chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(),
};
ty
})
.collect();
let result = Canonical { value, num_vars: subst.binders.len() };
SolutionVariables(result)
};
match solution {
chalk_solve::Solution::Unique(constr_subst) => {
let subst = chalk_ir::Canonical {
value: constr_subst.value.subst,
binders: constr_subst.binders,
};
Solution::Unique(convert_subst(subst))
}
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Definite(subst)) => {
Solution::Ambig(Guidance::Definite(convert_subst(subst)))
}
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Suggested(subst)) => {
Solution::Ambig(Guidance::Suggested(convert_subst(subst)))
}
chalk_solve::Solution::Ambig(chalk_solve::Guidance::Unknown) => {
Solution::Ambig(Guidance::Unknown)
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct SolutionVariables(pub Canonical<Vec<Ty>>);
#[derive(Clone, Debug, PartialEq, Eq)]
/// A (possible) solution for a proposed goal.
pub enum Solution {
/// The goal indeed holds, and there is a unique value for all existential
/// variables.
Unique(SolutionVariables),
/// The goal may be provable in multiple ways, but regardless we may have some guidance
/// for type inference. In this case, we don't return any lifetime
/// constraints, since we have not "committed" to any particular solution
/// yet.
Ambig(Guidance),
}
#[derive(Clone, Debug, PartialEq, Eq)]
/// When a goal holds ambiguously (e.g., because there are multiple possible
/// solutions), we issue a set of *guidance* back to type inference.
pub enum Guidance {
/// The existential variables *must* have the given values if the goal is
/// ever to hold, but that alone isn't enough to guarantee the goal will
/// actually hold.
Definite(SolutionVariables),
/// There are multiple plausible values for the existentials, but the ones
/// here are suggested as the preferred choice heuristically. These should
/// be used for inference fallback only.
Suggested(SolutionVariables),
/// There's no useful information to feed back to type inference
Unknown,
}
|