aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir_def/src/body/lower.rs
blob: 4a26e6397e996e1168678af5cd93f3e5c9e95bce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
//! Transforms `ast::Expr` into an equivalent `hir_def::expr::Expr`
//! representation.

use either::Either;
use hir_expand::{
    hygiene::Hygiene,
    name::{name, AsName, Name},
    HirFileId, MacroDefId, MacroDefKind,
};
use ra_arena::Arena;
use ra_syntax::{
    ast::{
        self, ArgListOwner, ArrayExprKind, LiteralKind, LoopBodyOwner, ModuleItemOwner, NameOwner,
        SlicePatComponents, TypeAscriptionOwner,
    },
    AstNode, AstPtr,
};
use test_utils::mark;

use crate::{
    adt::StructKind,
    body::{Body, BodySourceMap, Expander, PatPtr, SyntheticSyntax},
    builtin_type::{BuiltinFloat, BuiltinInt},
    db::DefDatabase,
    expr::{
        dummy_expr_id, ArithOp, Array, BinaryOp, BindingAnnotation, CmpOp, Expr, ExprId, Literal,
        LogicOp, MatchArm, Ordering, Pat, PatId, RecordFieldPat, RecordLitField, Statement,
    },
    item_scope::BuiltinShadowMode,
    item_tree::{ItemTree, ItemTreeId, ItemTreeNode},
    path::{GenericArgs, Path},
    type_ref::{Mutability, Rawness, TypeRef},
    AdtId, ConstLoc, ContainerId, DefWithBodyId, EnumLoc, FunctionLoc, Intern, ModuleDefId,
    StaticLoc, StructLoc, TraitLoc, TypeAliasLoc, UnionLoc,
};

use super::{ExprSource, PatSource};
use ast::AstChildren;
use rustc_hash::FxHashMap;
use std::{any::type_name, sync::Arc};

pub(crate) struct LowerCtx {
    hygiene: Hygiene,
}

impl LowerCtx {
    pub fn new(db: &dyn DefDatabase, file_id: HirFileId) -> Self {
        LowerCtx { hygiene: Hygiene::new(db.upcast(), file_id) }
    }
    pub fn with_hygiene(hygiene: &Hygiene) -> Self {
        LowerCtx { hygiene: hygiene.clone() }
    }

    pub fn lower_path(&self, ast: ast::Path) -> Option<Path> {
        Path::from_src(ast, &self.hygiene)
    }
}

pub(super) fn lower(
    db: &dyn DefDatabase,
    def: DefWithBodyId,
    expander: Expander,
    params: Option<ast::ParamList>,
    body: Option<ast::Expr>,
) -> (Body, BodySourceMap) {
    let item_tree = db.item_tree(expander.current_file_id);
    ExprCollector {
        db,
        def,
        source_map: BodySourceMap::default(),
        body: Body {
            exprs: Arena::default(),
            pats: Arena::default(),
            params: Vec::new(),
            body_expr: dummy_expr_id(),
            item_scope: Default::default(),
        },
        item_trees: {
            let mut map = FxHashMap::default();
            map.insert(expander.current_file_id, item_tree);
            map
        },
        expander,
    }
    .collect(params, body)
}

struct ExprCollector<'a> {
    db: &'a dyn DefDatabase,
    def: DefWithBodyId,
    expander: Expander,
    body: Body,
    source_map: BodySourceMap,

    item_trees: FxHashMap<HirFileId, Arc<ItemTree>>,
}

impl ExprCollector<'_> {
    fn collect(
        mut self,
        param_list: Option<ast::ParamList>,
        body: Option<ast::Expr>,
    ) -> (Body, BodySourceMap) {
        if let Some(param_list) = param_list {
            if let Some(self_param) = param_list.self_param() {
                let ptr = AstPtr::new(&self_param);
                let param_pat = self.alloc_pat(
                    Pat::Bind {
                        name: name![self],
                        mode: BindingAnnotation::Unannotated,
                        subpat: None,
                    },
                    Either::Right(ptr),
                );
                self.body.params.push(param_pat);
            }

            for param in param_list.params() {
                let pat = match param.pat() {
                    None => continue,
                    Some(pat) => pat,
                };
                let param_pat = self.collect_pat(pat);
                self.body.params.push(param_pat);
            }
        };

        self.body.body_expr = self.collect_expr_opt(body);
        (self.body, self.source_map)
    }

    fn ctx(&self) -> LowerCtx {
        LowerCtx::new(self.db, self.expander.current_file_id)
    }

    fn alloc_expr(&mut self, expr: Expr, ptr: AstPtr<ast::Expr>) -> ExprId {
        let src = self.expander.to_source(ptr);
        let id = self.make_expr(expr, Ok(src.clone()));
        self.source_map.expr_map.insert(src, id);
        id
    }
    // desugared exprs don't have ptr, that's wrong and should be fixed
    // somehow.
    fn alloc_expr_desugared(&mut self, expr: Expr) -> ExprId {
        self.make_expr(expr, Err(SyntheticSyntax))
    }
    fn empty_block(&mut self) -> ExprId {
        self.alloc_expr_desugared(Expr::Block { statements: Vec::new(), tail: None, label: None })
    }
    fn missing_expr(&mut self) -> ExprId {
        self.alloc_expr_desugared(Expr::Missing)
    }
    fn make_expr(&mut self, expr: Expr, src: Result<ExprSource, SyntheticSyntax>) -> ExprId {
        let id = self.body.exprs.alloc(expr);
        self.source_map.expr_map_back.insert(id, src);
        id
    }

    fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId {
        let src = self.expander.to_source(ptr);
        let id = self.make_pat(pat, Ok(src.clone()));
        self.source_map.pat_map.insert(src, id);
        id
    }
    fn missing_pat(&mut self) -> PatId {
        self.make_pat(Pat::Missing, Err(SyntheticSyntax))
    }
    fn make_pat(&mut self, pat: Pat, src: Result<PatSource, SyntheticSyntax>) -> PatId {
        let id = self.body.pats.alloc(pat);
        self.source_map.pat_map_back.insert(id, src);
        id
    }

    fn collect_expr(&mut self, expr: ast::Expr) -> ExprId {
        let syntax_ptr = AstPtr::new(&expr);
        if !self.expander.is_cfg_enabled(&expr) {
            return self.missing_expr();
        }

        match expr {
            ast::Expr::IfExpr(e) => {
                let then_branch = self.collect_block_opt(e.then_branch());

                let else_branch = e.else_branch().map(|b| match b {
                    ast::ElseBranch::Block(it) => self.collect_block(it),
                    ast::ElseBranch::IfExpr(elif) => {
                        let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap();
                        self.collect_expr(expr)
                    }
                });

                let condition = match e.condition() {
                    None => self.missing_expr(),
                    Some(condition) => match condition.pat() {
                        None => self.collect_expr_opt(condition.expr()),
                        // if let -- desugar to match
                        Some(pat) => {
                            let pat = self.collect_pat(pat);
                            let match_expr = self.collect_expr_opt(condition.expr());
                            let placeholder_pat = self.missing_pat();
                            let arms = vec![
                                MatchArm { pat, expr: then_branch, guard: None },
                                MatchArm {
                                    pat: placeholder_pat,
                                    expr: else_branch.unwrap_or_else(|| self.empty_block()),
                                    guard: None,
                                },
                            ];
                            return self
                                .alloc_expr(Expr::Match { expr: match_expr, arms }, syntax_ptr);
                        }
                    },
                };

                self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr)
            }
            ast::Expr::EffectExpr(e) => match e.effect() {
                ast::Effect::Try(_) => {
                    let body = self.collect_block_opt(e.block_expr());
                    self.alloc_expr(Expr::TryBlock { body }, syntax_ptr)
                }
                ast::Effect::Unsafe(_) => {
                    let body = self.collect_block_opt(e.block_expr());
                    self.alloc_expr(Expr::Unsafe { body }, syntax_ptr)
                }
                // FIXME: we need to record these effects somewhere...
                ast::Effect::Async(_) | ast::Effect::Label(_) => {
                    self.collect_block_opt(e.block_expr())
                }
            },
            ast::Expr::BlockExpr(e) => self.collect_block(e),
            ast::Expr::LoopExpr(e) => {
                let body = self.collect_block_opt(e.loop_body());
                self.alloc_expr(
                    Expr::Loop {
                        body,
                        label: e
                            .label()
                            .and_then(|l| l.lifetime_token())
                            .map(|l| Name::new_lifetime(&l)),
                    },
                    syntax_ptr,
                )
            }
            ast::Expr::WhileExpr(e) => {
                let body = self.collect_block_opt(e.loop_body());

                let condition = match e.condition() {
                    None => self.missing_expr(),
                    Some(condition) => match condition.pat() {
                        None => self.collect_expr_opt(condition.expr()),
                        // if let -- desugar to match
                        Some(pat) => {
                            mark::hit!(infer_resolve_while_let);
                            let pat = self.collect_pat(pat);
                            let match_expr = self.collect_expr_opt(condition.expr());
                            let placeholder_pat = self.missing_pat();
                            let break_ =
                                self.alloc_expr_desugared(Expr::Break { expr: None, label: None });
                            let arms = vec![
                                MatchArm { pat, expr: body, guard: None },
                                MatchArm { pat: placeholder_pat, expr: break_, guard: None },
                            ];
                            let match_expr =
                                self.alloc_expr_desugared(Expr::Match { expr: match_expr, arms });
                            return self.alloc_expr(
                                Expr::Loop {
                                    body: match_expr,
                                    label: e
                                        .label()
                                        .and_then(|l| l.lifetime_token())
                                        .map(|l| Name::new_lifetime(&l)),
                                },
                                syntax_ptr,
                            );
                        }
                    },
                };

                self.alloc_expr(
                    Expr::While {
                        condition,
                        body,
                        label: e
                            .label()
                            .and_then(|l| l.lifetime_token())
                            .map(|l| Name::new_lifetime(&l)),
                    },
                    syntax_ptr,
                )
            }
            ast::Expr::ForExpr(e) => {
                let iterable = self.collect_expr_opt(e.iterable());
                let pat = self.collect_pat_opt(e.pat());
                let body = self.collect_block_opt(e.loop_body());
                self.alloc_expr(
                    Expr::For {
                        iterable,
                        pat,
                        body,
                        label: e
                            .label()
                            .and_then(|l| l.lifetime_token())
                            .map(|l| Name::new_lifetime(&l)),
                    },
                    syntax_ptr,
                )
            }
            ast::Expr::CallExpr(e) => {
                let callee = self.collect_expr_opt(e.expr());
                let args = if let Some(arg_list) = e.arg_list() {
                    arg_list.args().map(|e| self.collect_expr(e)).collect()
                } else {
                    Vec::new()
                };
                self.alloc_expr(Expr::Call { callee, args }, syntax_ptr)
            }
            ast::Expr::MethodCallExpr(e) => {
                let receiver = self.collect_expr_opt(e.expr());
                let args = if let Some(arg_list) = e.arg_list() {
                    arg_list.args().map(|e| self.collect_expr(e)).collect()
                } else {
                    Vec::new()
                };
                let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
                let generic_args =
                    e.type_arg_list().and_then(|it| GenericArgs::from_ast(&self.ctx(), it));
                self.alloc_expr(
                    Expr::MethodCall { receiver, method_name, args, generic_args },
                    syntax_ptr,
                )
            }
            ast::Expr::MatchExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                let arms = if let Some(match_arm_list) = e.match_arm_list() {
                    match_arm_list
                        .arms()
                        .map(|arm| MatchArm {
                            pat: self.collect_pat_opt(arm.pat()),
                            expr: self.collect_expr_opt(arm.expr()),
                            guard: arm
                                .guard()
                                .and_then(|guard| guard.expr())
                                .map(|e| self.collect_expr(e)),
                        })
                        .collect()
                } else {
                    Vec::new()
                };
                self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
            }
            ast::Expr::PathExpr(e) => {
                let path = e
                    .path()
                    .and_then(|path| self.expander.parse_path(path))
                    .map(Expr::Path)
                    .unwrap_or(Expr::Missing);
                self.alloc_expr(path, syntax_ptr)
            }
            ast::Expr::ContinueExpr(e) => self.alloc_expr(
                Expr::Continue { label: e.lifetime_token().map(|l| Name::new_lifetime(&l)) },
                syntax_ptr,
            ),
            ast::Expr::BreakExpr(e) => {
                let expr = e.expr().map(|e| self.collect_expr(e));
                self.alloc_expr(
                    Expr::Break { expr, label: e.lifetime_token().map(|l| Name::new_lifetime(&l)) },
                    syntax_ptr,
                )
            }
            ast::Expr::ParenExpr(e) => {
                let inner = self.collect_expr_opt(e.expr());
                // make the paren expr point to the inner expression as well
                let src = self.expander.to_source(syntax_ptr);
                self.source_map.expr_map.insert(src, inner);
                inner
            }
            ast::Expr::ReturnExpr(e) => {
                let expr = e.expr().map(|e| self.collect_expr(e));
                self.alloc_expr(Expr::Return { expr }, syntax_ptr)
            }
            ast::Expr::RecordExpr(e) => {
                let path = e.path().and_then(|path| self.expander.parse_path(path));
                let mut field_ptrs = Vec::new();
                let record_lit = if let Some(nfl) = e.record_expr_field_list() {
                    let fields = nfl
                        .fields()
                        .inspect(|field| field_ptrs.push(AstPtr::new(field)))
                        .filter_map(|field| {
                            if !self.expander.is_cfg_enabled(&field) {
                                return None;
                            }
                            let name = field.field_name()?.as_name();

                            Some(RecordLitField {
                                name,
                                expr: match field.expr() {
                                    Some(e) => self.collect_expr(e),
                                    None => self.missing_expr(),
                                },
                            })
                        })
                        .collect();
                    let spread = nfl.spread().map(|s| self.collect_expr(s));
                    Expr::RecordLit { path, fields, spread }
                } else {
                    Expr::RecordLit { path, fields: Vec::new(), spread: None }
                };

                let res = self.alloc_expr(record_lit, syntax_ptr);
                for (i, ptr) in field_ptrs.into_iter().enumerate() {
                    let src = self.expander.to_source(ptr);
                    self.source_map.field_map.insert((res, i), src);
                }
                res
            }
            ast::Expr::FieldExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                let name = match e.field_access() {
                    Some(kind) => kind.as_name(),
                    _ => Name::missing(),
                };
                self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
            }
            ast::Expr::AwaitExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                self.alloc_expr(Expr::Await { expr }, syntax_ptr)
            }
            ast::Expr::TryExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                self.alloc_expr(Expr::Try { expr }, syntax_ptr)
            }
            ast::Expr::CastExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                let type_ref = TypeRef::from_ast_opt(&self.ctx(), e.type_ref());
                self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
            }
            ast::Expr::RefExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                let raw_tok = e.raw_token().is_some();
                let mutability = if raw_tok {
                    if e.mut_token().is_some() {
                        Mutability::Mut
                    } else if e.const_token().is_some() {
                        Mutability::Shared
                    } else {
                        unreachable!("parser only remaps to raw_token() if matching mutability token follows")
                    }
                } else {
                    Mutability::from_mutable(e.mut_token().is_some())
                };
                let rawness = Rawness::from_raw(raw_tok);
                self.alloc_expr(Expr::Ref { expr, rawness, mutability }, syntax_ptr)
            }
            ast::Expr::PrefixExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                if let Some(op) = e.op_kind() {
                    self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr)
                } else {
                    self.alloc_expr(Expr::Missing, syntax_ptr)
                }
            }
            ast::Expr::LambdaExpr(e) => {
                let mut args = Vec::new();
                let mut arg_types = Vec::new();
                if let Some(pl) = e.param_list() {
                    for param in pl.params() {
                        let pat = self.collect_pat_opt(param.pat());
                        let type_ref =
                            param.ascribed_type().map(|it| TypeRef::from_ast(&self.ctx(), it));
                        args.push(pat);
                        arg_types.push(type_ref);
                    }
                }
                let ret_type = e
                    .ret_type()
                    .and_then(|r| r.type_ref())
                    .map(|it| TypeRef::from_ast(&self.ctx(), it));
                let body = self.collect_expr_opt(e.body());
                self.alloc_expr(Expr::Lambda { args, arg_types, ret_type, body }, syntax_ptr)
            }
            ast::Expr::BinExpr(e) => {
                let lhs = self.collect_expr_opt(e.lhs());
                let rhs = self.collect_expr_opt(e.rhs());
                let op = e.op_kind().map(BinaryOp::from);
                self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
            }
            ast::Expr::TupleExpr(e) => {
                let exprs = e.exprs().map(|expr| self.collect_expr(expr)).collect();
                self.alloc_expr(Expr::Tuple { exprs }, syntax_ptr)
            }
            ast::Expr::BoxExpr(e) => {
                let expr = self.collect_expr_opt(e.expr());
                self.alloc_expr(Expr::Box { expr }, syntax_ptr)
            }

            ast::Expr::ArrayExpr(e) => {
                let kind = e.kind();

                match kind {
                    ArrayExprKind::ElementList(e) => {
                        let exprs = e.map(|expr| self.collect_expr(expr)).collect();
                        self.alloc_expr(Expr::Array(Array::ElementList(exprs)), syntax_ptr)
                    }
                    ArrayExprKind::Repeat { initializer, repeat } => {
                        let initializer = self.collect_expr_opt(initializer);
                        let repeat = self.collect_expr_opt(repeat);
                        self.alloc_expr(
                            Expr::Array(Array::Repeat { initializer, repeat }),
                            syntax_ptr,
                        )
                    }
                }
            }

            ast::Expr::Literal(e) => self.alloc_expr(Expr::Literal(e.kind().into()), syntax_ptr),
            ast::Expr::IndexExpr(e) => {
                let base = self.collect_expr_opt(e.base());
                let index = self.collect_expr_opt(e.index());
                self.alloc_expr(Expr::Index { base, index }, syntax_ptr)
            }
            ast::Expr::RangeExpr(e) => {
                let lhs = e.start().map(|lhs| self.collect_expr(lhs));
                let rhs = e.end().map(|rhs| self.collect_expr(rhs));
                match e.op_kind() {
                    Some(range_type) => {
                        self.alloc_expr(Expr::Range { lhs, rhs, range_type }, syntax_ptr)
                    }
                    None => self.alloc_expr(Expr::Missing, syntax_ptr),
                }
            }
            ast::Expr::MacroCall(e) => {
                if let Some(name) = e.is_macro_rules().map(|it| it.as_name()) {
                    let mac = MacroDefId {
                        krate: Some(self.expander.module.krate),
                        ast_id: Some(self.expander.ast_id(&e)),
                        kind: MacroDefKind::Declarative,
                        local_inner: false,
                    };
                    self.body.item_scope.define_legacy_macro(name, mac);

                    // FIXME: do we still need to allocate this as missing ?
                    self.alloc_expr(Expr::Missing, syntax_ptr)
                } else {
                    let macro_call = self.expander.to_source(AstPtr::new(&e));
                    match self.expander.enter_expand(self.db, Some(&self.body.item_scope), e) {
                        Some((mark, expansion)) => {
                            self.source_map
                                .expansions
                                .insert(macro_call, self.expander.current_file_id);

                            let item_tree = self.db.item_tree(self.expander.current_file_id);
                            self.item_trees.insert(self.expander.current_file_id, item_tree);
                            let id = self.collect_expr(expansion);
                            self.expander.exit(self.db, mark);
                            id
                        }
                        None => self.alloc_expr(Expr::Missing, syntax_ptr),
                    }
                }
            }

            // FIXME implement HIR for these:
            ast::Expr::Label(_e) => self.alloc_expr(Expr::Missing, syntax_ptr),
        }
    }

    fn find_inner_item<N: ItemTreeNode>(&self, ast: &N::Source) -> Option<ItemTreeId<N>> {
        let id = self.expander.ast_id(ast);
        let tree = &self.item_trees[&id.file_id];

        // FIXME: This probably breaks with `use` items, since they produce multiple item tree nodes

        // Root file (non-macro).
        let item_tree_id = tree
            .all_inner_items()
            .chain(tree.top_level_items().iter().copied())
            .filter_map(|mod_item| mod_item.downcast::<N>())
            .find(|tree_id| tree[*tree_id].ast_id().upcast() == id.value.upcast())
            .or_else(|| {
                log::debug!(
                    "couldn't find inner {} item for {:?} (AST: `{}` - {:?})",
                    type_name::<N>(),
                    id,
                    ast.syntax(),
                    ast.syntax(),
                );
                None
            })?;

        Some(ItemTreeId::new(id.file_id, item_tree_id))
    }

    fn collect_expr_opt(&mut self, expr: Option<ast::Expr>) -> ExprId {
        if let Some(expr) = expr {
            self.collect_expr(expr)
        } else {
            self.missing_expr()
        }
    }

    fn collect_block(&mut self, block: ast::BlockExpr) -> ExprId {
        let syntax_node_ptr = AstPtr::new(&block.clone().into());
        self.collect_block_items(&block);
        let statements = block
            .statements()
            .map(|s| match s {
                ast::Stmt::LetStmt(stmt) => {
                    let pat = self.collect_pat_opt(stmt.pat());
                    let type_ref =
                        stmt.ascribed_type().map(|it| TypeRef::from_ast(&self.ctx(), it));
                    let initializer = stmt.initializer().map(|e| self.collect_expr(e));
                    Statement::Let { pat, type_ref, initializer }
                }
                ast::Stmt::ExprStmt(stmt) => Statement::Expr(self.collect_expr_opt(stmt.expr())),
            })
            .collect();
        let tail = block.expr().map(|e| self.collect_expr(e));
        let label = block.label().and_then(|l| l.lifetime_token()).map(|t| Name::new_lifetime(&t));
        self.alloc_expr(Expr::Block { statements, tail, label }, syntax_node_ptr)
    }

    fn collect_block_items(&mut self, block: &ast::BlockExpr) {
        let container = ContainerId::DefWithBodyId(self.def);

        let items = block
            .items()
            .filter_map(|item| {
                let (def, name): (ModuleDefId, Option<ast::Name>) = match item {
                    ast::Item::Fn(def) => {
                        let id = self.find_inner_item(&def)?;
                        (
                            FunctionLoc { container: container.into(), id }.intern(self.db).into(),
                            def.name(),
                        )
                    }
                    ast::Item::TypeAlias(def) => {
                        let id = self.find_inner_item(&def)?;
                        (
                            TypeAliasLoc { container: container.into(), id }.intern(self.db).into(),
                            def.name(),
                        )
                    }
                    ast::Item::Const(def) => {
                        let id = self.find_inner_item(&def)?;
                        (
                            ConstLoc { container: container.into(), id }.intern(self.db).into(),
                            def.name(),
                        )
                    }
                    ast::Item::Static(def) => {
                        let id = self.find_inner_item(&def)?;
                        (StaticLoc { container, id }.intern(self.db).into(), def.name())
                    }
                    ast::Item::Struct(def) => {
                        let id = self.find_inner_item(&def)?;
                        (StructLoc { container, id }.intern(self.db).into(), def.name())
                    }
                    ast::Item::Enum(def) => {
                        let id = self.find_inner_item(&def)?;
                        (EnumLoc { container, id }.intern(self.db).into(), def.name())
                    }
                    ast::Item::Union(def) => {
                        let id = self.find_inner_item(&def)?;
                        (UnionLoc { container, id }.intern(self.db).into(), def.name())
                    }
                    ast::Item::TraitDef(def) => {
                        let id = self.find_inner_item(&def)?;
                        (TraitLoc { container, id }.intern(self.db).into(), def.name())
                    }
                    ast::Item::ExternBlock(_) => return None, // FIXME: collect from extern blocks
                    ast::Item::ImplDef(_)
                    | ast::Item::Use(_)
                    | ast::Item::ExternCrate(_)
                    | ast::Item::Module(_)
                    | ast::Item::MacroCall(_) => return None,
                };

                Some((def, name))
            })
            .collect::<Vec<_>>();

        for (def, name) in items {
            self.body.item_scope.define_def(def);
            if let Some(name) = name {
                let vis = crate::visibility::Visibility::Public; // FIXME determine correctly
                let has_constructor = match def {
                    ModuleDefId::AdtId(AdtId::StructId(s)) => {
                        self.db.struct_data(s).variant_data.kind() != StructKind::Record
                    }
                    _ => true,
                };
                self.body.item_scope.push_res(
                    name.as_name(),
                    crate::per_ns::PerNs::from_def(def, vis, has_constructor),
                );
            }
        }
    }

    fn collect_block_opt(&mut self, expr: Option<ast::BlockExpr>) -> ExprId {
        if let Some(block) = expr {
            self.collect_block(block)
        } else {
            self.missing_expr()
        }
    }

    fn collect_pat(&mut self, pat: ast::Pat) -> PatId {
        let pattern = match &pat {
            ast::Pat::BindPat(bp) => {
                let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
                let annotation =
                    BindingAnnotation::new(bp.mut_token().is_some(), bp.ref_token().is_some());
                let subpat = bp.pat().map(|subpat| self.collect_pat(subpat));
                if annotation == BindingAnnotation::Unannotated && subpat.is_none() {
                    // This could also be a single-segment path pattern. To
                    // decide that, we need to try resolving the name.
                    let (resolved, _) = self.expander.crate_def_map.resolve_path(
                        self.db,
                        self.expander.module.local_id,
                        &name.clone().into(),
                        BuiltinShadowMode::Other,
                    );
                    match resolved.take_values() {
                        Some(ModuleDefId::ConstId(_)) => Pat::Path(name.into()),
                        Some(ModuleDefId::EnumVariantId(_)) => {
                            // this is only really valid for unit variants, but
                            // shadowing other enum variants with a pattern is
                            // an error anyway
                            Pat::Path(name.into())
                        }
                        Some(ModuleDefId::AdtId(AdtId::StructId(s)))
                            if self.db.struct_data(s).variant_data.kind() != StructKind::Record =>
                        {
                            // Funnily enough, record structs *can* be shadowed
                            // by pattern bindings (but unit or tuple structs
                            // can't).
                            Pat::Path(name.into())
                        }
                        // shadowing statics is an error as well, so we just ignore that case here
                        _ => Pat::Bind { name, mode: annotation, subpat },
                    }
                } else {
                    Pat::Bind { name, mode: annotation, subpat }
                }
            }
            ast::Pat::TupleStructPat(p) => {
                let path = p.path().and_then(|path| self.expander.parse_path(path));
                let (args, ellipsis) = self.collect_tuple_pat(p.args());
                Pat::TupleStruct { path, args, ellipsis }
            }
            ast::Pat::RefPat(p) => {
                let pat = self.collect_pat_opt(p.pat());
                let mutability = Mutability::from_mutable(p.mut_token().is_some());
                Pat::Ref { pat, mutability }
            }
            ast::Pat::PathPat(p) => {
                let path = p.path().and_then(|path| self.expander.parse_path(path));
                path.map(Pat::Path).unwrap_or(Pat::Missing)
            }
            ast::Pat::OrPat(p) => {
                let pats = p.pats().map(|p| self.collect_pat(p)).collect();
                Pat::Or(pats)
            }
            ast::Pat::ParenPat(p) => return self.collect_pat_opt(p.pat()),
            ast::Pat::TuplePat(p) => {
                let (args, ellipsis) = self.collect_tuple_pat(p.args());
                Pat::Tuple { args, ellipsis }
            }
            ast::Pat::PlaceholderPat(_) => Pat::Wild,
            ast::Pat::RecordPat(p) => {
                let path = p.path().and_then(|path| self.expander.parse_path(path));
                let record_field_pat_list =
                    p.record_field_pat_list().expect("every struct should have a field list");
                let mut fields: Vec<_> = record_field_pat_list
                    .bind_pats()
                    .filter_map(|bind_pat| {
                        let ast_pat =
                            ast::Pat::cast(bind_pat.syntax().clone()).expect("bind pat is a pat");
                        let pat = self.collect_pat(ast_pat);
                        let name = bind_pat.name()?.as_name();
                        Some(RecordFieldPat { name, pat })
                    })
                    .collect();
                let iter = record_field_pat_list.record_field_pats().filter_map(|f| {
                    let ast_pat = f.pat()?;
                    let pat = self.collect_pat(ast_pat);
                    let name = f.field_name()?.as_name();
                    Some(RecordFieldPat { name, pat })
                });
                fields.extend(iter);

                let ellipsis = record_field_pat_list.dotdot_token().is_some();

                Pat::Record { path, args: fields, ellipsis }
            }
            ast::Pat::SlicePat(p) => {
                let SlicePatComponents { prefix, slice, suffix } = p.components();

                // FIXME properly handle `DotDotPat`
                Pat::Slice {
                    prefix: prefix.into_iter().map(|p| self.collect_pat(p)).collect(),
                    slice: slice.map(|p| self.collect_pat(p)),
                    suffix: suffix.into_iter().map(|p| self.collect_pat(p)).collect(),
                }
            }
            ast::Pat::LiteralPat(lit) => {
                if let Some(ast_lit) = lit.literal() {
                    let expr = Expr::Literal(ast_lit.kind().into());
                    let expr_ptr = AstPtr::new(&ast::Expr::Literal(ast_lit));
                    let expr_id = self.alloc_expr(expr, expr_ptr);
                    Pat::Lit(expr_id)
                } else {
                    Pat::Missing
                }
            }
            ast::Pat::DotDotPat(_) => {
                // `DotDotPat` requires special handling and should not be mapped
                // to a Pat. Here we are using `Pat::Missing` as a fallback for
                // when `DotDotPat` is mapped to `Pat`, which can easily happen
                // when the source code being analyzed has a malformed pattern
                // which includes `..` in a place where it isn't valid.

                Pat::Missing
            }
            // FIXME: implement
            ast::Pat::BoxPat(_) | ast::Pat::RangePat(_) | ast::Pat::MacroPat(_) => Pat::Missing,
        };
        let ptr = AstPtr::new(&pat);
        self.alloc_pat(pattern, Either::Left(ptr))
    }

    fn collect_pat_opt(&mut self, pat: Option<ast::Pat>) -> PatId {
        if let Some(pat) = pat {
            self.collect_pat(pat)
        } else {
            self.missing_pat()
        }
    }

    fn collect_tuple_pat(&mut self, args: AstChildren<ast::Pat>) -> (Vec<PatId>, Option<usize>) {
        // Find the location of the `..`, if there is one. Note that we do not
        // consider the possiblity of there being multiple `..` here.
        let ellipsis = args.clone().position(|p| matches!(p, ast::Pat::DotDotPat(_)));
        // We want to skip the `..` pattern here, since we account for it above.
        let args = args
            .filter(|p| !matches!(p, ast::Pat::DotDotPat(_)))
            .map(|p| self.collect_pat(p))
            .collect();

        (args, ellipsis)
    }
}

impl From<ast::BinOp> for BinaryOp {
    fn from(ast_op: ast::BinOp) -> Self {
        match ast_op {
            ast::BinOp::BooleanOr => BinaryOp::LogicOp(LogicOp::Or),
            ast::BinOp::BooleanAnd => BinaryOp::LogicOp(LogicOp::And),
            ast::BinOp::EqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: false }),
            ast::BinOp::NegatedEqualityTest => BinaryOp::CmpOp(CmpOp::Eq { negated: true }),
            ast::BinOp::LesserEqualTest => {
                BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: false })
            }
            ast::BinOp::GreaterEqualTest => {
                BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: false })
            }
            ast::BinOp::LesserTest => {
                BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: true })
            }
            ast::BinOp::GreaterTest => {
                BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: true })
            }
            ast::BinOp::Addition => BinaryOp::ArithOp(ArithOp::Add),
            ast::BinOp::Multiplication => BinaryOp::ArithOp(ArithOp::Mul),
            ast::BinOp::Subtraction => BinaryOp::ArithOp(ArithOp::Sub),
            ast::BinOp::Division => BinaryOp::ArithOp(ArithOp::Div),
            ast::BinOp::Remainder => BinaryOp::ArithOp(ArithOp::Rem),
            ast::BinOp::LeftShift => BinaryOp::ArithOp(ArithOp::Shl),
            ast::BinOp::RightShift => BinaryOp::ArithOp(ArithOp::Shr),
            ast::BinOp::BitwiseXor => BinaryOp::ArithOp(ArithOp::BitXor),
            ast::BinOp::BitwiseOr => BinaryOp::ArithOp(ArithOp::BitOr),
            ast::BinOp::BitwiseAnd => BinaryOp::ArithOp(ArithOp::BitAnd),
            ast::BinOp::Assignment => BinaryOp::Assignment { op: None },
            ast::BinOp::AddAssign => BinaryOp::Assignment { op: Some(ArithOp::Add) },
            ast::BinOp::DivAssign => BinaryOp::Assignment { op: Some(ArithOp::Div) },
            ast::BinOp::MulAssign => BinaryOp::Assignment { op: Some(ArithOp::Mul) },
            ast::BinOp::RemAssign => BinaryOp::Assignment { op: Some(ArithOp::Rem) },
            ast::BinOp::ShlAssign => BinaryOp::Assignment { op: Some(ArithOp::Shl) },
            ast::BinOp::ShrAssign => BinaryOp::Assignment { op: Some(ArithOp::Shr) },
            ast::BinOp::SubAssign => BinaryOp::Assignment { op: Some(ArithOp::Sub) },
            ast::BinOp::BitOrAssign => BinaryOp::Assignment { op: Some(ArithOp::BitOr) },
            ast::BinOp::BitAndAssign => BinaryOp::Assignment { op: Some(ArithOp::BitAnd) },
            ast::BinOp::BitXorAssign => BinaryOp::Assignment { op: Some(ArithOp::BitXor) },
        }
    }
}

impl From<ast::LiteralKind> for Literal {
    fn from(ast_lit_kind: ast::LiteralKind) -> Self {
        match ast_lit_kind {
            LiteralKind::IntNumber { suffix } => {
                let known_name = suffix.and_then(|it| BuiltinInt::from_suffix(&it));

                Literal::Int(Default::default(), known_name)
            }
            LiteralKind::FloatNumber { suffix } => {
                let known_name = suffix.and_then(|it| BuiltinFloat::from_suffix(&it));

                Literal::Float(Default::default(), known_name)
            }
            LiteralKind::ByteString => Literal::ByteString(Default::default()),
            LiteralKind::String => Literal::String(Default::default()),
            LiteralKind::Byte => Literal::Int(Default::default(), Some(BuiltinInt::U8)),
            LiteralKind::Bool(val) => Literal::Bool(val),
            LiteralKind::Char => Literal::Char(Default::default()),
        }
    }
}