1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
//! FIXME: write short doc here
use std::fmt;
use crate::{
db::HirDatabase, utils::generics, ApplicationTy, CallableDef, FnSig, GenericPredicate,
Obligation, ProjectionTy, Substs, TraitRef, Ty, TypeCtor,
};
use hir_def::{generics::TypeParamProvenance, AdtId, AssocContainerId, Lookup};
use hir_expand::name::Name;
pub struct HirFormatter<'a, 'b> {
pub db: &'a dyn HirDatabase,
fmt: &'a mut fmt::Formatter<'b>,
buf: String,
curr_size: usize,
pub(crate) max_size: Option<usize>,
omit_verbose_types: bool,
}
pub trait HirDisplay {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result;
fn display<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper(db, self, None, false)
}
fn display_truncated<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper(db, self, max_size, true)
}
}
impl<'a, 'b> HirFormatter<'a, 'b> {
pub fn write_joined<T: HirDisplay>(
&mut self,
iter: impl IntoIterator<Item = T>,
sep: &str,
) -> fmt::Result {
let mut first = true;
for e in iter {
if !first {
write!(self, "{}", sep)?;
}
first = false;
e.hir_fmt(self)?;
}
Ok(())
}
/// This allows using the `write!` macro directly with a `HirFormatter`.
pub fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
// We write to a buffer first to track output size
self.buf.clear();
fmt::write(&mut self.buf, args)?;
self.curr_size += self.buf.len();
// Then we write to the internal formatter from the buffer
self.fmt.write_str(&self.buf)
}
pub fn should_truncate(&self) -> bool {
if let Some(max_size) = self.max_size {
self.curr_size >= max_size
} else {
false
}
}
pub fn omit_verbose_types(&self) -> bool {
self.omit_verbose_types
}
}
pub struct HirDisplayWrapper<'a, T>(&'a dyn HirDatabase, &'a T, Option<usize>, bool);
impl<'a, T> fmt::Display for HirDisplayWrapper<'a, T>
where
T: HirDisplay,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.1.hir_fmt(&mut HirFormatter {
db: self.0,
fmt: f,
buf: String::with_capacity(20),
curr_size: 0,
max_size: self.2,
omit_verbose_types: self.3,
})
}
}
const TYPE_HINT_TRUNCATION: &str = "…";
impl HirDisplay for &Ty {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for ApplicationTy {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self.ctor {
TypeCtor::Bool => write!(f, "bool")?,
TypeCtor::Char => write!(f, "char")?,
TypeCtor::Int(t) => write!(f, "{}", t)?,
TypeCtor::Float(t) => write!(f, "{}", t)?,
TypeCtor::Str => write!(f, "str")?,
TypeCtor::Slice => {
let t = self.parameters.as_single();
write!(f, "[{}]", t.display(f.db))?;
}
TypeCtor::Array => {
let t = self.parameters.as_single();
write!(f, "[{}; _]", t.display(f.db))?;
}
TypeCtor::RawPtr(m) => {
let t = self.parameters.as_single();
write!(f, "*{}{}", m.as_keyword_for_ptr(), t.display(f.db))?;
}
TypeCtor::Ref(m) => {
let t = self.parameters.as_single();
let ty_display = if f.omit_verbose_types() {
t.display_truncated(f.db, f.max_size)
} else {
t.display(f.db)
};
write!(f, "&{}{}", m.as_keyword_for_ref(), ty_display)?;
}
TypeCtor::Never => write!(f, "!")?,
TypeCtor::Tuple { .. } => {
let ts = &self.parameters;
if ts.len() == 1 {
write!(f, "({},)", ts[0].display(f.db))?;
} else {
write!(f, "(")?;
f.write_joined(&*ts.0, ", ")?;
write!(f, ")")?;
}
}
TypeCtor::FnPtr { .. } => {
let sig = FnSig::from_fn_ptr_substs(&self.parameters);
write!(f, "fn(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ") -> {}", sig.ret().display(f.db))?;
}
TypeCtor::FnDef(def) => {
let sig = f.db.callable_item_signature(def).subst(&self.parameters);
match def {
CallableDef::FunctionId(ff) => write!(f, "fn {}", f.db.function_data(ff).name)?,
CallableDef::StructId(s) => write!(f, "{}", f.db.struct_data(s).name)?,
CallableDef::EnumVariantId(e) => {
write!(f, "{}", f.db.enum_data(e.parent).variants[e.local_id].name)?
}
};
if self.parameters.len() > 0 {
let generics = generics(f.db.upcast(), def.into());
let (parent_params, self_param, type_params, _impl_trait_params) =
generics.provenance_split();
let total_len = parent_params + self_param + type_params;
// We print all params except implicit impl Trait params. Still a bit weird; should we leave out parent and self?
if total_len > 0 {
write!(f, "<")?;
f.write_joined(&self.parameters.0[..total_len], ", ")?;
write!(f, ">")?;
}
}
write!(f, "(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ") -> {}", sig.ret().display(f.db))?;
}
TypeCtor::Adt(def_id) => {
let name = match def_id {
AdtId::StructId(it) => f.db.struct_data(it).name.clone(),
AdtId::UnionId(it) => f.db.union_data(it).name.clone(),
AdtId::EnumId(it) => f.db.enum_data(it).name.clone(),
};
write!(f, "{}", name)?;
if self.parameters.len() > 0 {
write!(f, "<")?;
let mut non_default_parameters = Vec::with_capacity(self.parameters.len());
let parameters_to_write = if f.omit_verbose_types() {
match self
.ctor
.as_generic_def()
.map(|generic_def_id| f.db.generic_defaults(generic_def_id))
.filter(|defaults| !defaults.is_empty())
{
Option::None => self.parameters.0.as_ref(),
Option::Some(default_parameters) => {
for (i, parameter) in self.parameters.iter().enumerate() {
match (parameter, default_parameters.get(i)) {
(&Ty::Unknown, _) | (_, None) => {
non_default_parameters.push(parameter.clone())
}
(_, Some(default_parameter))
if parameter != default_parameter =>
{
non_default_parameters.push(parameter.clone())
}
_ => (),
}
}
&non_default_parameters
}
}
} else {
self.parameters.0.as_ref()
};
f.write_joined(parameters_to_write, ", ")?;
write!(f, ">")?;
}
}
TypeCtor::AssociatedType(type_alias) => {
let trait_ = match type_alias.lookup(f.db.upcast()).container {
AssocContainerId::TraitId(it) => it,
_ => panic!("not an associated type"),
};
let trait_name = f.db.trait_data(trait_).name.clone();
let name = f.db.type_alias_data(type_alias).name.clone();
write!(f, "{}::{}", trait_name, name)?;
if self.parameters.len() > 0 {
write!(f, "<")?;
f.write_joined(&*self.parameters.0, ", ")?;
write!(f, ">")?;
}
}
TypeCtor::Closure { .. } => {
let sig = self.parameters[0]
.callable_sig(f.db)
.expect("first closure parameter should contain signature");
let return_type_hint = sig.ret().display(f.db);
if sig.params().is_empty() {
write!(f, "|| -> {}", return_type_hint)?;
} else if f.omit_verbose_types() {
write!(f, "|{}| -> {}", TYPE_HINT_TRUNCATION, return_type_hint)?;
} else {
write!(f, "|")?;
f.write_joined(sig.params(), ", ")?;
write!(f, "| -> {}", return_type_hint)?;
};
}
}
Ok(())
}
}
impl HirDisplay for ProjectionTy {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
let trait_name = f.db.trait_data(self.trait_(f.db)).name.clone();
write!(f, "<{} as {}", self.parameters[0].display(f.db), trait_name,)?;
if self.parameters.len() > 1 {
write!(f, "<")?;
f.write_joined(&self.parameters[1..], ", ")?;
write!(f, ">")?;
}
write!(f, ">::{}", f.db.type_alias_data(self.associated_ty).name)?;
Ok(())
}
}
impl HirDisplay for Ty {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self {
Ty::Apply(a_ty) => a_ty.hir_fmt(f)?,
Ty::Projection(p_ty) => p_ty.hir_fmt(f)?,
Ty::Placeholder(id) => {
let generics = generics(f.db.upcast(), id.parent);
let param_data = &generics.params.types[id.local_id];
match param_data.provenance {
TypeParamProvenance::TypeParamList | TypeParamProvenance::TraitSelf => {
write!(f, "{}", param_data.name.clone().unwrap_or_else(Name::missing))?
}
TypeParamProvenance::ArgumentImplTrait => {
write!(f, "impl ")?;
let bounds = f.db.generic_predicates_for_param(*id);
let substs = Substs::type_params_for_generics(&generics);
write_bounds_like_dyn_trait(
&bounds.iter().map(|b| b.clone().subst(&substs)).collect::<Vec<_>>(),
f,
)?;
}
}
}
Ty::Bound(idx) => write!(f, "?{}", idx)?,
Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
match self {
Ty::Dyn(_) => write!(f, "dyn ")?,
Ty::Opaque(_) => write!(f, "impl ")?,
_ => unreachable!(),
};
write_bounds_like_dyn_trait(&predicates, f)?;
}
Ty::Unknown => write!(f, "{{unknown}}")?,
Ty::Infer(..) => write!(f, "_")?,
}
Ok(())
}
}
fn write_bounds_like_dyn_trait(
predicates: &[GenericPredicate],
f: &mut HirFormatter,
) -> fmt::Result {
// Note: This code is written to produce nice results (i.e.
// corresponding to surface Rust) for types that can occur in
// actual Rust. It will have weird results if the predicates
// aren't as expected (i.e. self types = $0, projection
// predicates for a certain trait come after the Implemented
// predicate for that trait).
let mut first = true;
let mut angle_open = false;
for p in predicates.iter() {
match p {
GenericPredicate::Implemented(trait_ref) => {
if angle_open {
write!(f, ">")?;
}
if !first {
write!(f, " + ")?;
}
// We assume that the self type is $0 (i.e. the
// existential) here, which is the only thing that's
// possible in actual Rust, and hence don't print it
write!(f, "{}", f.db.trait_data(trait_ref.trait_).name.clone())?;
if trait_ref.substs.len() > 1 {
write!(f, "<")?;
f.write_joined(&trait_ref.substs[1..], ", ")?;
// there might be assoc type bindings, so we leave the angle brackets open
angle_open = true;
}
}
GenericPredicate::Projection(projection_pred) => {
// in types in actual Rust, these will always come
// after the corresponding Implemented predicate
if angle_open {
write!(f, ", ")?;
} else {
write!(f, "<")?;
angle_open = true;
}
let name =
f.db.type_alias_data(projection_pred.projection_ty.associated_ty).name.clone();
write!(f, "{} = ", name)?;
projection_pred.ty.hir_fmt(f)?;
}
GenericPredicate::Error => {
if angle_open {
// impl Trait<X, {error}>
write!(f, ", ")?;
} else if !first {
// impl Trait + {error}
write!(f, " + ")?;
}
p.hir_fmt(f)?;
}
}
first = false;
}
if angle_open {
write!(f, ">")?;
}
Ok(())
}
impl TraitRef {
fn hir_fmt_ext(&self, f: &mut HirFormatter, use_as: bool) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
self.substs[0].hir_fmt(f)?;
if use_as {
write!(f, " as ")?;
} else {
write!(f, ": ")?;
}
write!(f, "{}", f.db.trait_data(self.trait_).name.clone())?;
if self.substs.len() > 1 {
write!(f, "<")?;
f.write_joined(&self.substs[1..], ", ")?;
write!(f, ">")?;
}
Ok(())
}
}
impl HirDisplay for TraitRef {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
self.hir_fmt_ext(f, false)
}
}
impl HirDisplay for &GenericPredicate {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for GenericPredicate {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self {
GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?,
GenericPredicate::Projection(projection_pred) => {
write!(f, "<")?;
projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?;
write!(
f,
">::{} = {}",
f.db.type_alias_data(projection_pred.projection_ty.associated_ty).name,
projection_pred.ty.display(f.db)
)?;
}
GenericPredicate::Error => write!(f, "{{error}}")?,
}
Ok(())
}
}
impl HirDisplay for Obligation {
fn hir_fmt(&self, f: &mut HirFormatter) -> fmt::Result {
match self {
Obligation::Trait(tr) => write!(f, "Implements({})", tr.display(f.db)),
Obligation::Projection(proj) => write!(
f,
"Normalize({} => {})",
proj.projection_ty.display(f.db),
proj.ty.display(f.db)
),
}
}
}
|