aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir_ty/src/lib.rs
blob: 13c5e6c6b73fe443a8f31bedc7487ce09381a1b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
//! The type system. We currently use this to infer types for completion, hover
//! information and various assists.

macro_rules! impl_froms {
    ($e:ident: $($v:ident $(($($sv:ident),*))?),*) => {
        $(
            impl From<$v> for $e {
                fn from(it: $v) -> $e {
                    $e::$v(it)
                }
            }
            $($(
                impl From<$sv> for $e {
                    fn from(it: $sv) -> $e {
                        $e::$v($v::$sv(it))
                    }
                }
            )*)?
        )*
    }
}

mod autoderef;
pub mod primitive;
pub mod traits;
pub mod method_resolution;
mod op;
mod lower;
mod infer;
pub mod display;
pub(crate) mod utils;
pub mod db;
pub mod diagnostics;
pub mod expr;

#[cfg(test)]
mod tests;
#[cfg(test)]
mod test_db;
mod marks;

use std::ops::Deref;
use std::sync::Arc;
use std::{iter, mem};

use hir_def::{
    expr::ExprId, type_ref::Mutability, AdtId, AssocContainerId, DefWithBodyId, GenericDefId,
    HasModule, Lookup, TraitId, TypeAliasId, TypeParamId,
};
use ra_db::{impl_intern_key, salsa, CrateId};

use crate::{
    db::HirDatabase,
    primitive::{FloatTy, IntTy, Uncertain},
    utils::{generics, make_mut_slice, Generics},
};
use display::HirDisplay;

pub use autoderef::autoderef;
pub use infer::{do_infer_query, InferTy, InferenceResult};
pub use lower::CallableDef;
pub use lower::{
    callable_item_sig, ImplTraitLoweringMode, TyDefId, TyLoweringContext, ValueTyDefId,
};
pub use traits::{InEnvironment, Obligation, ProjectionPredicate, TraitEnvironment};

/// A type constructor or type name: this might be something like the primitive
/// type `bool`, a struct like `Vec`, or things like function pointers or
/// tuples.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum TypeCtor {
    /// The primitive boolean type. Written as `bool`.
    Bool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point). Written as `char`.
    Char,

    /// A primitive integer type. For example, `i32`.
    Int(Uncertain<IntTy>),

    /// A primitive floating-point type. For example, `f64`.
    Float(Uncertain<FloatTy>),

    /// Structures, enumerations and unions.
    Adt(AdtId),

    /// The pointee of a string slice. Written as `str`.
    Str,

    /// The pointee of an array slice.  Written as `[T]`.
    Slice,

    /// An array with the given length. Written as `[T; n]`.
    Array,

    /// A raw pointer. Written as `*mut T` or `*const T`
    RawPtr(Mutability),

    /// A reference; a pointer with an associated lifetime. Written as
    /// `&'a mut T` or `&'a T`.
    Ref(Mutability),

    /// The anonymous type of a function declaration/definition. Each
    /// function has a unique type, which is output (for a function
    /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
    ///
    /// This includes tuple struct / enum variant constructors as well.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```
    /// fn foo() -> i32 { 1 }
    /// let bar = foo; // bar: fn() -> i32 {foo}
    /// ```
    FnDef(CallableDef),

    /// A pointer to a function.  Written as `fn() -> i32`.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```
    /// fn foo() -> i32 { 1 }
    /// let bar: fn() -> i32 = foo;
    /// ```
    FnPtr { num_args: u16 },

    /// The never type `!`.
    Never,

    /// A tuple type.  For example, `(i32, bool)`.
    Tuple { cardinality: u16 },

    /// Represents an associated item like `Iterator::Item`.  This is used
    /// when we have tried to normalize a projection like `T::Item` but
    /// couldn't find a better representation.  In that case, we generate
    /// an **application type** like `(Iterator::Item)<T>`.
    AssociatedType(TypeAliasId),

    /// The type of a specific closure.
    ///
    /// The closure signature is stored in a `FnPtr` type in the first type
    /// parameter.
    Closure { def: DefWithBodyId, expr: ExprId },
}

/// This exists just for Chalk, because Chalk just has a single `StructId` where
/// we have different kinds of ADTs, primitive types and special type
/// constructors like tuples and function pointers.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeCtorId(salsa::InternId);
impl_intern_key!(TypeCtorId);

impl TypeCtor {
    pub fn num_ty_params(self, db: &impl HirDatabase) -> usize {
        match self {
            TypeCtor::Bool
            | TypeCtor::Char
            | TypeCtor::Int(_)
            | TypeCtor::Float(_)
            | TypeCtor::Str
            | TypeCtor::Never => 0,
            TypeCtor::Slice
            | TypeCtor::Array
            | TypeCtor::RawPtr(_)
            | TypeCtor::Ref(_)
            | TypeCtor::Closure { .. } // 1 param representing the signature of the closure
            => 1,
            TypeCtor::Adt(adt) => {
                let generic_params = generics(db, adt.into());
                generic_params.len()
            }
            TypeCtor::FnDef(callable) => {
                let generic_params = generics(db, callable.into());
                generic_params.len()
            }
            TypeCtor::AssociatedType(type_alias) => {
                let generic_params = generics(db, type_alias.into());
                generic_params.len()
            }
            TypeCtor::FnPtr { num_args } => num_args as usize + 1,
            TypeCtor::Tuple { cardinality } => cardinality as usize,
        }
    }

    pub fn krate(self, db: &impl HirDatabase) -> Option<CrateId> {
        match self {
            TypeCtor::Bool
            | TypeCtor::Char
            | TypeCtor::Int(_)
            | TypeCtor::Float(_)
            | TypeCtor::Str
            | TypeCtor::Never
            | TypeCtor::Slice
            | TypeCtor::Array
            | TypeCtor::RawPtr(_)
            | TypeCtor::Ref(_)
            | TypeCtor::FnPtr { .. }
            | TypeCtor::Tuple { .. } => None,
            // Closure's krate is irrelevant for coherence I would think?
            TypeCtor::Closure { .. } => None,
            TypeCtor::Adt(adt) => Some(adt.module(db).krate),
            TypeCtor::FnDef(callable) => Some(callable.krate(db)),
            TypeCtor::AssociatedType(type_alias) => Some(type_alias.lookup(db).module(db).krate),
        }
    }

    pub fn as_generic_def(self) -> Option<GenericDefId> {
        match self {
            TypeCtor::Bool
            | TypeCtor::Char
            | TypeCtor::Int(_)
            | TypeCtor::Float(_)
            | TypeCtor::Str
            | TypeCtor::Never
            | TypeCtor::Slice
            | TypeCtor::Array
            | TypeCtor::RawPtr(_)
            | TypeCtor::Ref(_)
            | TypeCtor::FnPtr { .. }
            | TypeCtor::Tuple { .. }
            | TypeCtor::Closure { .. } => None,
            TypeCtor::Adt(adt) => Some(adt.into()),
            TypeCtor::FnDef(callable) => Some(callable.into()),
            TypeCtor::AssociatedType(type_alias) => Some(type_alias.into()),
        }
    }
}

/// A nominal type with (maybe 0) type parameters. This might be a primitive
/// type like `bool`, a struct, tuple, function pointer, reference or
/// several other things.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ApplicationTy {
    pub ctor: TypeCtor,
    pub parameters: Substs,
}

/// A "projection" type corresponds to an (unnormalized)
/// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
/// trait and all its parameters are fully known.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct ProjectionTy {
    pub associated_ty: TypeAliasId,
    pub parameters: Substs,
}

impl ProjectionTy {
    pub fn trait_ref(&self, db: &impl HirDatabase) -> TraitRef {
        TraitRef { trait_: self.trait_(db), substs: self.parameters.clone() }
    }

    fn trait_(&self, db: &impl HirDatabase) -> TraitId {
        match self.associated_ty.lookup(db).container {
            AssocContainerId::TraitId(it) => it,
            _ => panic!("projection ty without parent trait"),
        }
    }
}

impl TypeWalk for ProjectionTy {
    fn walk(&self, f: &mut impl FnMut(&Ty)) {
        self.parameters.walk(f);
    }

    fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
        self.parameters.walk_mut_binders(f, binders);
    }
}

/// A type.
///
/// See also the `TyKind` enum in rustc (librustc/ty/sty.rs), which represents
/// the same thing (but in a different way).
///
/// This should be cheap to clone.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum Ty {
    /// A nominal type with (maybe 0) type parameters. This might be a primitive
    /// type like `bool`, a struct, tuple, function pointer, reference or
    /// several other things.
    Apply(ApplicationTy),

    /// A "projection" type corresponds to an (unnormalized)
    /// projection like `<P0 as Trait<P1..Pn>>::Foo`. Note that the
    /// trait and all its parameters are fully known.
    Projection(ProjectionTy),

    /// A placeholder for a type parameter; for example, `T` in `fn f<T>(x: T)
    /// {}` when we're type-checking the body of that function. In this
    /// situation, we know this stands for *some* type, but don't know the exact
    /// type.
    Placeholder(TypeParamId),

    /// A bound type variable. This is used in various places: when representing
    /// some polymorphic type like the type of function `fn f<T>`, the type
    /// parameters get turned into variables; during trait resolution, inference
    /// variables get turned into bound variables and back; and in `Dyn` the
    /// `Self` type is represented with a bound variable as well.
    Bound(u32),

    /// A type variable used during type checking.
    Infer(InferTy),

    /// A trait object (`dyn Trait` or bare `Trait` in pre-2018 Rust).
    ///
    /// The predicates are quantified over the `Self` type, i.e. `Ty::Bound(0)`
    /// represents the `Self` type inside the bounds. This is currently
    /// implicit; Chalk has the `Binders` struct to make it explicit, but it
    /// didn't seem worth the overhead yet.
    Dyn(Arc<[GenericPredicate]>),

    /// An opaque type (`impl Trait`).
    ///
    /// The predicates are quantified over the `Self` type; see `Ty::Dyn` for
    /// more.
    Opaque(Arc<[GenericPredicate]>),

    /// A placeholder for a type which could not be computed; this is propagated
    /// to avoid useless error messages. Doubles as a placeholder where type
    /// variables are inserted before type checking, since we want to try to
    /// infer a better type here anyway -- for the IDE use case, we want to try
    /// to infer as much as possible even in the presence of type errors.
    Unknown,
}

/// A list of substitutions for generic parameters.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Substs(Arc<[Ty]>);

impl TypeWalk for Substs {
    fn walk(&self, f: &mut impl FnMut(&Ty)) {
        for t in self.0.iter() {
            t.walk(f);
        }
    }

    fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
        for t in make_mut_slice(&mut self.0) {
            t.walk_mut_binders(f, binders);
        }
    }
}

impl Substs {
    pub fn empty() -> Substs {
        Substs(Arc::new([]))
    }

    pub fn single(ty: Ty) -> Substs {
        Substs(Arc::new([ty]))
    }

    pub fn prefix(&self, n: usize) -> Substs {
        Substs(self.0[..std::cmp::min(self.0.len(), n)].into())
    }

    pub fn as_single(&self) -> &Ty {
        if self.0.len() != 1 {
            panic!("expected substs of len 1, got {:?}", self);
        }
        &self.0[0]
    }

    /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
    pub(crate) fn type_params_for_generics(generic_params: &Generics) -> Substs {
        Substs(generic_params.iter().map(|(id, _)| Ty::Placeholder(id)).collect())
    }

    /// Return Substs that replace each parameter by itself (i.e. `Ty::Param`).
    pub fn type_params(db: &impl HirDatabase, def: impl Into<GenericDefId>) -> Substs {
        let params = generics(db, def.into());
        Substs::type_params_for_generics(&params)
    }

    /// Return Substs that replace each parameter by a bound variable.
    pub(crate) fn bound_vars(generic_params: &Generics) -> Substs {
        Substs(generic_params.iter().enumerate().map(|(idx, _)| Ty::Bound(idx as u32)).collect())
    }

    pub fn build_for_def(db: &impl HirDatabase, def: impl Into<GenericDefId>) -> SubstsBuilder {
        let def = def.into();
        let params = generics(db, def);
        let param_count = params.len();
        Substs::builder(param_count)
    }

    pub(crate) fn build_for_generics(generic_params: &Generics) -> SubstsBuilder {
        Substs::builder(generic_params.len())
    }

    pub fn build_for_type_ctor(db: &impl HirDatabase, type_ctor: TypeCtor) -> SubstsBuilder {
        Substs::builder(type_ctor.num_ty_params(db))
    }

    fn builder(param_count: usize) -> SubstsBuilder {
        SubstsBuilder { vec: Vec::with_capacity(param_count), param_count }
    }
}

#[derive(Debug, Clone)]
pub struct SubstsBuilder {
    vec: Vec<Ty>,
    param_count: usize,
}

impl SubstsBuilder {
    pub fn build(self) -> Substs {
        assert_eq!(self.vec.len(), self.param_count);
        Substs(self.vec.into())
    }

    pub fn push(mut self, ty: Ty) -> Self {
        self.vec.push(ty);
        self
    }

    fn remaining(&self) -> usize {
        self.param_count - self.vec.len()
    }

    pub fn fill_with_bound_vars(self, starting_from: u32) -> Self {
        self.fill((starting_from..).map(Ty::Bound))
    }

    pub fn fill_with_unknown(self) -> Self {
        self.fill(iter::repeat(Ty::Unknown))
    }

    pub fn fill(mut self, filler: impl Iterator<Item = Ty>) -> Self {
        self.vec.extend(filler.take(self.remaining()));
        assert_eq!(self.remaining(), 0);
        self
    }

    pub fn use_parent_substs(mut self, parent_substs: &Substs) -> Self {
        assert!(self.vec.is_empty());
        assert!(parent_substs.len() <= self.param_count);
        self.vec.extend(parent_substs.iter().cloned());
        self
    }
}

impl Deref for Substs {
    type Target = [Ty];

    fn deref(&self) -> &[Ty] {
        &self.0
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Binders<T> {
    pub num_binders: usize,
    pub value: T,
}

impl<T> Binders<T> {
    pub fn new(num_binders: usize, value: T) -> Self {
        Self { num_binders, value }
    }
}

impl<T: TypeWalk> Binders<T> {
    /// Substitutes all variables.
    pub fn subst(self, subst: &Substs) -> T {
        assert_eq!(subst.len(), self.num_binders);
        self.value.subst_bound_vars(subst)
    }

    /// Substitutes just a prefix of the variables (shifting the rest).
    pub fn subst_prefix(self, subst: &Substs) -> Binders<T> {
        assert!(subst.len() < self.num_binders);
        Binders::new(self.num_binders - subst.len(), self.value.subst_bound_vars(subst))
    }
}

/// A trait with type parameters. This includes the `Self`, so this represents a concrete type implementing the trait.
/// Name to be bikeshedded: TraitBound? TraitImplements?
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TraitRef {
    /// FIXME name?
    pub trait_: TraitId,
    pub substs: Substs,
}

impl TraitRef {
    pub fn self_ty(&self) -> &Ty {
        &self.substs[0]
    }
}

impl TypeWalk for TraitRef {
    fn walk(&self, f: &mut impl FnMut(&Ty)) {
        self.substs.walk(f);
    }

    fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
        self.substs.walk_mut_binders(f, binders);
    }
}

/// Like `generics::WherePredicate`, but with resolved types: A condition on the
/// parameters of a generic item.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum GenericPredicate {
    /// The given trait needs to be implemented for its type parameters.
    Implemented(TraitRef),
    /// An associated type bindings like in `Iterator<Item = T>`.
    Projection(ProjectionPredicate),
    /// We couldn't resolve the trait reference. (If some type parameters can't
    /// be resolved, they will just be Unknown).
    Error,
}

impl GenericPredicate {
    pub fn is_error(&self) -> bool {
        match self {
            GenericPredicate::Error => true,
            _ => false,
        }
    }

    pub fn is_implemented(&self) -> bool {
        match self {
            GenericPredicate::Implemented(_) => true,
            _ => false,
        }
    }

    pub fn trait_ref(&self, db: &impl HirDatabase) -> Option<TraitRef> {
        match self {
            GenericPredicate::Implemented(tr) => Some(tr.clone()),
            GenericPredicate::Projection(proj) => Some(proj.projection_ty.trait_ref(db)),
            GenericPredicate::Error => None,
        }
    }
}

impl TypeWalk for GenericPredicate {
    fn walk(&self, f: &mut impl FnMut(&Ty)) {
        match self {
            GenericPredicate::Implemented(trait_ref) => trait_ref.walk(f),
            GenericPredicate::Projection(projection_pred) => projection_pred.walk(f),
            GenericPredicate::Error => {}
        }
    }

    fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
        match self {
            GenericPredicate::Implemented(trait_ref) => trait_ref.walk_mut_binders(f, binders),
            GenericPredicate::Projection(projection_pred) => {
                projection_pred.walk_mut_binders(f, binders)
            }
            GenericPredicate::Error => {}
        }
    }
}

/// Basically a claim (currently not validated / checked) that the contained
/// type / trait ref contains no inference variables; any inference variables it
/// contained have been replaced by bound variables, and `num_vars` tells us how
/// many there are. This is used to erase irrelevant differences between types
/// before using them in queries.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct Canonical<T> {
    pub value: T,
    pub num_vars: usize,
}

/// A function signature as seen by type inference: Several parameter types and
/// one return type.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct FnSig {
    params_and_return: Arc<[Ty]>,
}

/// A polymorphic function signature.
pub type PolyFnSig = Binders<FnSig>;

impl FnSig {
    pub fn from_params_and_return(mut params: Vec<Ty>, ret: Ty) -> FnSig {
        params.push(ret);
        FnSig { params_and_return: params.into() }
    }

    pub fn from_fn_ptr_substs(substs: &Substs) -> FnSig {
        FnSig { params_and_return: Arc::clone(&substs.0) }
    }

    pub fn params(&self) -> &[Ty] {
        &self.params_and_return[0..self.params_and_return.len() - 1]
    }

    pub fn ret(&self) -> &Ty {
        &self.params_and_return[self.params_and_return.len() - 1]
    }
}

impl TypeWalk for FnSig {
    fn walk(&self, f: &mut impl FnMut(&Ty)) {
        for t in self.params_and_return.iter() {
            t.walk(f);
        }
    }

    fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
        for t in make_mut_slice(&mut self.params_and_return) {
            t.walk_mut_binders(f, binders);
        }
    }
}

impl Ty {
    pub fn simple(ctor: TypeCtor) -> Ty {
        Ty::Apply(ApplicationTy { ctor, parameters: Substs::empty() })
    }
    pub fn apply_one(ctor: TypeCtor, param: Ty) -> Ty {
        Ty::Apply(ApplicationTy { ctor, parameters: Substs::single(param) })
    }
    pub fn apply(ctor: TypeCtor, parameters: Substs) -> Ty {
        Ty::Apply(ApplicationTy { ctor, parameters })
    }
    pub fn unit() -> Self {
        Ty::apply(TypeCtor::Tuple { cardinality: 0 }, Substs::empty())
    }

    pub fn as_reference(&self) -> Option<(&Ty, Mutability)> {
        match self {
            Ty::Apply(ApplicationTy { ctor: TypeCtor::Ref(mutability), parameters }) => {
                Some((parameters.as_single(), *mutability))
            }
            _ => None,
        }
    }

    pub fn as_adt(&self) -> Option<(AdtId, &Substs)> {
        match self {
            Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(adt_def), parameters }) => {
                Some((*adt_def, parameters))
            }
            _ => None,
        }
    }

    pub fn as_tuple(&self) -> Option<&Substs> {
        match self {
            Ty::Apply(ApplicationTy { ctor: TypeCtor::Tuple { .. }, parameters }) => {
                Some(parameters)
            }
            _ => None,
        }
    }

    pub fn as_callable(&self) -> Option<(CallableDef, &Substs)> {
        match self {
            Ty::Apply(ApplicationTy { ctor: TypeCtor::FnDef(callable_def), parameters }) => {
                Some((*callable_def, parameters))
            }
            _ => None,
        }
    }

    fn builtin_deref(&self) -> Option<Ty> {
        match self {
            Ty::Apply(a_ty) => match a_ty.ctor {
                TypeCtor::Ref(..) => Some(Ty::clone(a_ty.parameters.as_single())),
                TypeCtor::RawPtr(..) => Some(Ty::clone(a_ty.parameters.as_single())),
                _ => None,
            },
            _ => None,
        }
    }

    fn callable_sig(&self, db: &impl HirDatabase) -> Option<FnSig> {
        match self {
            Ty::Apply(a_ty) => match a_ty.ctor {
                TypeCtor::FnPtr { .. } => Some(FnSig::from_fn_ptr_substs(&a_ty.parameters)),
                TypeCtor::FnDef(def) => {
                    let sig = db.callable_item_signature(def);
                    Some(sig.subst(&a_ty.parameters))
                }
                TypeCtor::Closure { .. } => {
                    let sig_param = &a_ty.parameters[0];
                    sig_param.callable_sig(db)
                }
                _ => None,
            },
            _ => None,
        }
    }

    /// If this is a type with type parameters (an ADT or function), replaces
    /// the `Substs` for these type parameters with the given ones. (So e.g. if
    /// `self` is `Option<_>` and the substs contain `u32`, we'll have
    /// `Option<u32>` afterwards.)
    pub fn apply_substs(self, substs: Substs) -> Ty {
        match self {
            Ty::Apply(ApplicationTy { ctor, parameters: previous_substs }) => {
                assert_eq!(previous_substs.len(), substs.len());
                Ty::Apply(ApplicationTy { ctor, parameters: substs })
            }
            _ => self,
        }
    }

    /// Returns the type parameters of this type if it has some (i.e. is an ADT
    /// or function); so if `self` is `Option<u32>`, this returns the `u32`.
    pub fn substs(&self) -> Option<Substs> {
        match self {
            Ty::Apply(ApplicationTy { parameters, .. }) => Some(parameters.clone()),
            _ => None,
        }
    }

    /// If this is an `impl Trait` or `dyn Trait`, returns that trait.
    pub fn inherent_trait(&self) -> Option<TraitId> {
        match self {
            Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
                predicates.iter().find_map(|pred| match pred {
                    GenericPredicate::Implemented(tr) => Some(tr.trait_),
                    _ => None,
                })
            }
            _ => None,
        }
    }
}

/// This allows walking structures that contain types to do something with those
/// types, similar to Chalk's `Fold` trait.
pub trait TypeWalk {
    fn walk(&self, f: &mut impl FnMut(&Ty));
    fn walk_mut(&mut self, f: &mut impl FnMut(&mut Ty)) {
        self.walk_mut_binders(&mut |ty, _binders| f(ty), 0);
    }
    /// Walk the type, counting entered binders.
    ///
    /// `Ty::Bound` variables use DeBruijn indexing, which means that 0 refers
    /// to the innermost binder, 1 to the next, etc.. So when we want to
    /// substitute a certain bound variable, we can't just walk the whole type
    /// and blindly replace each instance of a certain index; when we 'enter'
    /// things that introduce new bound variables, we have to keep track of
    /// that. Currently, the only thing that introduces bound variables on our
    /// side are `Ty::Dyn` and `Ty::Opaque`, which each introduce a bound
    /// variable for the self type.
    fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize);

    fn fold(mut self, f: &mut impl FnMut(Ty) -> Ty) -> Self
    where
        Self: Sized,
    {
        self.walk_mut(&mut |ty_mut| {
            let ty = mem::replace(ty_mut, Ty::Unknown);
            *ty_mut = f(ty);
        });
        self
    }

    /// Substitutes `Ty::Bound` vars with the given substitution.
    fn subst_bound_vars(mut self, substs: &Substs) -> Self
    where
        Self: Sized,
    {
        self.walk_mut_binders(
            &mut |ty, binders| {
                if let &mut Ty::Bound(idx) = ty {
                    if idx as usize >= binders && (idx as usize - binders) < substs.len() {
                        *ty = substs.0[idx as usize - binders].clone();
                    } else if idx as usize >= binders + substs.len() {
                        // shift free binders
                        *ty = Ty::Bound(idx - substs.len() as u32);
                    }
                }
            },
            0,
        );
        self
    }

    /// Shifts up `Ty::Bound` vars by `n`.
    fn shift_bound_vars(self, n: i32) -> Self
    where
        Self: Sized,
    {
        self.fold(&mut |ty| match ty {
            Ty::Bound(idx) => {
                assert!(idx as i32 >= -n);
                Ty::Bound((idx as i32 + n) as u32)
            }
            ty => ty,
        })
    }
}

impl TypeWalk for Ty {
    fn walk(&self, f: &mut impl FnMut(&Ty)) {
        match self {
            Ty::Apply(a_ty) => {
                for t in a_ty.parameters.iter() {
                    t.walk(f);
                }
            }
            Ty::Projection(p_ty) => {
                for t in p_ty.parameters.iter() {
                    t.walk(f);
                }
            }
            Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
                for p in predicates.iter() {
                    p.walk(f);
                }
            }
            Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
        }
        f(self);
    }

    fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
        match self {
            Ty::Apply(a_ty) => {
                a_ty.parameters.walk_mut_binders(f, binders);
            }
            Ty::Projection(p_ty) => {
                p_ty.parameters.walk_mut_binders(f, binders);
            }
            Ty::Dyn(predicates) | Ty::Opaque(predicates) => {
                for p in make_mut_slice(predicates) {
                    p.walk_mut_binders(f, binders + 1);
                }
            }
            Ty::Placeholder { .. } | Ty::Bound(_) | Ty::Infer(_) | Ty::Unknown => {}
        }
        f(self, binders);
    }
}