1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
//! Helper functions for working with def, which don't need to be a separate
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
use std::sync::Arc;
use hir_def::{
adt::VariantData,
db::DefDatabase,
generics::{GenericParams, TypeParamData},
path::Path,
resolver::{HasResolver, TypeNs},
type_ref::TypeRef,
AssocContainerId, GenericDefId, Lookup, TraitId, TypeAliasId, TypeParamId, VariantId,
};
use hir_expand::name::{name, Name};
fn direct_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec<TraitId> {
let resolver = trait_.resolver(db);
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
db.generic_params(trait_.into())
.where_predicates
.iter()
.filter_map(|pred| match &pred.type_ref {
TypeRef::Path(p) if p == &Path::from(name![Self]) => pred.bound.as_path(),
_ => None,
})
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) {
Some(TypeNs::TraitId(t)) => Some(t),
_ => None,
})
.collect()
}
/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub(super) fn all_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec<TraitId> {
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = vec![trait_];
let mut i = 0;
while i < result.len() {
let t = result[i];
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in direct_super_traits(db, t) {
if !result.contains(&tt) {
result.push(tt);
}
}
i += 1;
}
result
}
pub(super) fn associated_type_by_name_including_super_traits(
db: &impl DefDatabase,
trait_: TraitId,
name: &Name,
) -> Option<TypeAliasId> {
all_super_traits(db, trait_)
.into_iter()
.find_map(|t| db.trait_data(t).associated_type_by_name(name))
}
pub(super) fn variant_data(db: &impl DefDatabase, var: VariantId) -> Arc<VariantData> {
match var {
VariantId::StructId(it) => db.struct_data(it).variant_data.clone(),
VariantId::UnionId(it) => db.union_data(it).variant_data.clone(),
VariantId::EnumVariantId(it) => {
db.enum_data(it.parent).variants[it.local_id].variant_data.clone()
}
}
}
/// Helper for mutating `Arc<[T]>` (i.e. `Arc::make_mut` for Arc slices).
/// The underlying values are cloned if there are other strong references.
pub(crate) fn make_mut_slice<T: Clone>(a: &mut Arc<[T]>) -> &mut [T] {
if Arc::get_mut(a).is_none() {
*a = a.iter().cloned().collect();
}
Arc::get_mut(a).unwrap()
}
pub(crate) fn generics(db: &impl DefDatabase, def: GenericDefId) -> Generics {
let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def)));
Generics { def, params: db.generic_params(def), parent_generics }
}
pub(crate) struct Generics {
def: GenericDefId,
pub(crate) params: Arc<GenericParams>,
parent_generics: Option<Box<Generics>>,
}
impl Generics {
pub(crate) fn iter<'a>(&'a self) -> impl Iterator<Item = (u32, &'a TypeParamData)> + 'a {
self.parent_generics
.as_ref()
.into_iter()
.flat_map(|it| it.params.types.iter())
.chain(self.params.types.iter())
.enumerate()
.map(|(i, (_local_id, p))| (i as u32, p))
}
pub(crate) fn iter_parent<'a>(&'a self) -> impl Iterator<Item = (u32, &'a TypeParamData)> + 'a {
self.parent_generics
.as_ref()
.into_iter()
.flat_map(|it| it.params.types.iter())
.enumerate()
.map(|(i, (_local_id, p))| (i as u32, p))
}
pub(crate) fn len(&self) -> usize {
self.len_split().0
}
/// (total, parents, child)
pub(crate) fn len_split(&self) -> (usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
let child = self.params.types.len();
(parent + child, parent, child)
}
pub(crate) fn param_idx(&self, param: TypeParamId) -> u32 {
self.find_param(param).0
}
pub(crate) fn param_name(&self, param: TypeParamId) -> Name {
self.find_param(param).1.name.clone()
}
fn find_param(&self, param: TypeParamId) -> (u32, &TypeParamData) {
if param.parent == self.def {
let (idx, (_local_id, data)) = self
.params
.types
.iter()
.enumerate()
.find(|(_, (idx, _))| *idx == param.local_id)
.unwrap();
let (_total, parent_len, _child) = self.len_split();
return ((parent_len + idx) as u32, data);
}
self.parent_generics.as_ref().unwrap().find_param(param)
}
}
fn parent_generic_def(db: &impl DefDatabase, def: GenericDefId) -> Option<GenericDefId> {
let container = match def {
GenericDefId::FunctionId(it) => it.lookup(db).container,
GenericDefId::TypeAliasId(it) => it.lookup(db).container,
GenericDefId::ConstId(it) => it.lookup(db).container,
GenericDefId::EnumVariantId(it) => return Some(it.parent.into()),
GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None,
};
match container {
AssocContainerId::ImplId(it) => Some(it.into()),
AssocContainerId::TraitId(it) => Some(it.into()),
AssocContainerId::ContainerId(_) => None,
}
}
|