aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_ide_api_light/src/assists.rs
blob: a27ef5da77ef5f210a0bcf3993cf81af34c47ece (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
//! This modules contains various "assists": suggestions for source code edits
//! which are likely to occur at a given cursor positon. For example, if the
//! cursor is on the `,`, a possible assist is swapping the elements around the
//! comma.

mod flip_comma;
mod add_derive;
mod add_impl;
mod introduce_variable;
mod change_visibility;
mod split_import;
mod replace_if_let_with_match;

use ra_text_edit::{TextEdit, TextEditBuilder};
use ra_syntax::{
    Direction, SyntaxNode, TextUnit, TextRange, SourceFile, AstNode,
    algo::{find_leaf_at_offset, find_node_at_offset, find_covering_node, LeafAtOffset},
};
use itertools::Itertools;

use crate::formatting::leading_indent;

pub use self::{
    flip_comma::flip_comma,
    add_derive::add_derive,
    add_impl::add_impl,
    introduce_variable::introduce_variable,
    change_visibility::change_visibility,
    split_import::split_import,
    replace_if_let_with_match::replace_if_let_with_match,
};

/// Return all the assists applicable at the given position.
pub fn assists(file: &SourceFile, range: TextRange) -> Vec<LocalEdit> {
    let ctx = AssistCtx::new(file, range);
    [
        flip_comma,
        add_derive,
        add_impl,
        introduce_variable,
        change_visibility,
        split_import,
        replace_if_let_with_match,
    ]
    .iter()
    .filter_map(|&assist| ctx.clone().apply(assist))
    .collect()
}

#[derive(Debug)]
pub struct LocalEdit {
    pub label: String,
    pub edit: TextEdit,
    pub cursor_position: Option<TextUnit>,
}

fn non_trivia_sibling(node: &SyntaxNode, direction: Direction) -> Option<&SyntaxNode> {
    node.siblings(direction)
        .skip(1)
        .find(|node| !node.kind().is_trivia())
}

/// `AssistCtx` allows to apply an assist or check if it could be applied.
///
/// Assists use a somewhat overengeneered approach, given the current needs. The
/// assists workflow consists of two phases. In the first phase, a user asks for
/// the list of available assists. In the second phase, the user picks a
/// particular assist and it gets applied.
///
/// There are two peculiarities here:
///
/// * first, we ideally avoid computing more things then neccessary to answer
///   "is assist applicable" in the first phase.
/// * second, when we are appling assist, we don't have a gurantee that there
///   weren't any changes between the point when user asked for assists and when
///   they applied a particular assist. So, when applying assist, we need to do
///   all the checks from scratch.
///
/// To avoid repeating the same code twice for both "check" and "apply"
/// functions, we use an approach remeniscent of that of Django's function based
/// views dealing with forms. Each assist receives a runtime parameter,
/// `should_compute_edit`. It first check if an edit is applicable (potentially
/// computing info required to compute the actual edit). If it is applicable,
/// and `should_compute_edit` is `true`, it then computes the actual edit.
///
/// So, to implement the original assists workflow, we can first apply each edit
/// with `should_compute_edit = false`, and then applying the selected edit
/// again, with `should_compute_edit = true` this time.
///
/// Note, however, that we don't actually use such two-phase logic at the
/// moment, because the LSP API is pretty awkward in this place, and it's much
/// easier to just compute the edit eagarly :-)
#[derive(Debug, Clone)]
pub struct AssistCtx<'a> {
    source_file: &'a SourceFile,
    range: TextRange,
    should_compute_edit: bool,
}

#[derive(Debug)]
pub enum Assist {
    Applicable,
    Edit(LocalEdit),
}

#[derive(Default)]
struct AssistBuilder {
    edit: TextEditBuilder,
    cursor_position: Option<TextUnit>,
}

impl<'a> AssistCtx<'a> {
    pub fn new(source_file: &'a SourceFile, range: TextRange) -> AssistCtx {
        AssistCtx {
            source_file,
            range,
            should_compute_edit: false,
        }
    }

    pub fn apply(mut self, assist: fn(AssistCtx) -> Option<Assist>) -> Option<LocalEdit> {
        self.should_compute_edit = true;
        match assist(self) {
            None => None,
            Some(Assist::Edit(e)) => Some(e),
            Some(Assist::Applicable) => unreachable!(),
        }
    }

    pub fn check(mut self, assist: fn(AssistCtx) -> Option<Assist>) -> bool {
        self.should_compute_edit = false;
        match assist(self) {
            None => false,
            Some(Assist::Edit(_)) => unreachable!(),
            Some(Assist::Applicable) => true,
        }
    }

    fn build(self, label: impl Into<String>, f: impl FnOnce(&mut AssistBuilder)) -> Option<Assist> {
        if !self.should_compute_edit {
            return Some(Assist::Applicable);
        }
        let mut edit = AssistBuilder::default();
        f(&mut edit);
        Some(Assist::Edit(LocalEdit {
            label: label.into(),
            edit: edit.edit.finish(),
            cursor_position: edit.cursor_position,
        }))
    }

    pub(crate) fn leaf_at_offset(&self) -> LeafAtOffset<&'a SyntaxNode> {
        find_leaf_at_offset(self.source_file.syntax(), self.range.start())
    }
    pub(crate) fn node_at_offset<N: AstNode>(&self) -> Option<&'a N> {
        find_node_at_offset(self.source_file.syntax(), self.range.start())
    }
    pub(crate) fn covering_node(&self) -> &'a SyntaxNode {
        find_covering_node(self.source_file.syntax(), self.range)
    }
}

impl AssistBuilder {
    fn replace(&mut self, range: TextRange, replace_with: impl Into<String>) {
        self.edit.replace(range, replace_with.into())
    }
    fn replace_node_and_indent(&mut self, node: &SyntaxNode, replace_with: impl Into<String>) {
        let mut replace_with = replace_with.into();
        if let Some(indent) = leading_indent(node) {
            replace_with = reindent(&replace_with, indent)
        }
        self.replace(node.range(), replace_with)
    }
    #[allow(unused)]
    fn delete(&mut self, range: TextRange) {
        self.edit.delete(range)
    }
    fn insert(&mut self, offset: TextUnit, text: impl Into<String>) {
        self.edit.insert(offset, text.into())
    }
    fn set_cursor(&mut self, offset: TextUnit) {
        self.cursor_position = Some(offset)
    }
}

fn reindent(text: &str, indent: &str) -> String {
    let indent = format!("\n{}", indent);
    text.lines().intersperse(&indent).collect()
}

#[cfg(test)]
fn check_assist(assist: fn(AssistCtx) -> Option<Assist>, before: &str, after: &str) {
    crate::test_utils::check_action(before, after, |file, off| {
        let range = TextRange::offset_len(off, 0.into());
        AssistCtx::new(file, range).apply(assist)
    })
}

#[cfg(test)]
fn check_assist_range(assist: fn(AssistCtx) -> Option<Assist>, before: &str, after: &str) {
    crate::test_utils::check_action_range(before, after, |file, range| {
        AssistCtx::new(file, range).apply(assist)
    })
}