1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
//! `mbe` (short for Macro By Example) crate contains code for handling
//! `macro_rules` macros. It uses `TokenTree` (from `ra_tt` package) as the
//! interface, although it contains some code to bridge `SyntaxNode`s and
//! `TokenTree`s as well!
mod parser;
mod mbe_expander;
mod syntax_bridge;
mod tt_iter;
mod subtree_source;
pub use tt::{Delimiter, Punct};
use crate::{
parser::{parse_pattern, Op},
tt_iter::TtIter,
};
#[derive(Debug, PartialEq, Eq)]
pub enum ParseError {
Expected(String),
}
#[derive(Debug, PartialEq, Eq)]
pub enum ExpandError {
NoMatchingRule,
UnexpectedToken,
BindingError(String),
ConversionError,
InvalidRepeat,
}
pub use crate::syntax_bridge::{
ast_to_token_tree, syntax_node_to_token_tree, token_tree_to_syntax_node, TokenMap,
};
/// This struct contains AST for a single `macro_rules` definition. What might
/// be very confusing is that AST has almost exactly the same shape as
/// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident`
/// and `$()*` have special meaning (see `Var` and `Repeat` data structures)
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MacroRules {
rules: Vec<Rule>,
/// Highest id of the token we have in TokenMap
shift: Shift,
}
#[derive(Clone, Debug, PartialEq, Eq)]
struct Rule {
lhs: tt::Subtree,
rhs: tt::Subtree,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Shift(u32);
impl Shift {
fn new(tt: &tt::Subtree) -> Shift {
// Note that TokenId is started from zero,
// We have to add 1 to prevent duplication.
let value = max_id(tt).map_or(0, |it| it + 1);
return Shift(value);
// Find the max token id inside a subtree
fn max_id(subtree: &tt::Subtree) -> Option<u32> {
subtree
.token_trees
.iter()
.filter_map(|tt| match tt {
tt::TokenTree::Subtree(subtree) => {
let tree_id = max_id(subtree);
match subtree.delimiter {
Some(it) if it.id != tt::TokenId::unspecified() => {
Some(tree_id.map_or(it.id.0, |t| t.max(it.id.0)))
}
_ => tree_id,
}
}
tt::TokenTree::Leaf(tt::Leaf::Ident(ident))
if ident.id != tt::TokenId::unspecified() =>
{
Some(ident.id.0)
}
_ => None,
})
.max()
}
}
/// Shift given TokenTree token id
fn shift_all(self, tt: &mut tt::Subtree) {
for t in tt.token_trees.iter_mut() {
match t {
tt::TokenTree::Leaf(leaf) => match leaf {
tt::Leaf::Ident(ident) => ident.id = self.shift(ident.id),
tt::Leaf::Punct(punct) => punct.id = self.shift(punct.id),
tt::Leaf::Literal(lit) => lit.id = self.shift(lit.id),
},
tt::TokenTree::Subtree(tt) => {
if let Some(it) = tt.delimiter.as_mut() {
it.id = self.shift(it.id);
};
self.shift_all(tt)
}
}
}
}
fn shift(self, id: tt::TokenId) -> tt::TokenId {
if id == tt::TokenId::unspecified() {
return id;
}
tt::TokenId(id.0 + self.0)
}
fn unshift(self, id: tt::TokenId) -> Option<tt::TokenId> {
id.0.checked_sub(self.0).map(tt::TokenId)
}
}
#[derive(Debug, Eq, PartialEq)]
pub enum Origin {
Def,
Call,
}
impl MacroRules {
pub fn parse(tt: &tt::Subtree) -> Result<MacroRules, ParseError> {
// Note: this parsing can be implemented using mbe machinery itself, by
// matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing
// manually seems easier.
let mut src = TtIter::new(tt);
let mut rules = Vec::new();
while src.len() > 0 {
let rule = Rule::parse(&mut src)?;
rules.push(rule);
if let Err(()) = src.expect_char(';') {
if src.len() > 0 {
return Err(ParseError::Expected("expected `:`".to_string()));
}
break;
}
}
for rule in rules.iter() {
validate(&rule.lhs)?;
}
Ok(MacroRules { rules, shift: Shift::new(tt) })
}
pub fn expand(&self, tt: &tt::Subtree) -> Result<tt::Subtree, ExpandError> {
// apply shift
let mut tt = tt.clone();
self.shift.shift_all(&mut tt);
mbe_expander::expand(self, &tt)
}
pub fn map_id_down(&self, id: tt::TokenId) -> tt::TokenId {
self.shift.shift(id)
}
pub fn map_id_up(&self, id: tt::TokenId) -> (tt::TokenId, Origin) {
match self.shift.unshift(id) {
Some(id) => (id, Origin::Call),
None => (id, Origin::Def),
}
}
}
impl Rule {
fn parse(src: &mut TtIter) -> Result<Rule, ParseError> {
let mut lhs = src
.expect_subtree()
.map_err(|()| ParseError::Expected("expected subtree".to_string()))?
.clone();
lhs.delimiter = None;
src.expect_char('=').map_err(|()| ParseError::Expected("expected `=`".to_string()))?;
src.expect_char('>').map_err(|()| ParseError::Expected("expected `>`".to_string()))?;
let mut rhs = src
.expect_subtree()
.map_err(|()| ParseError::Expected("expected subtree".to_string()))?
.clone();
rhs.delimiter = None;
Ok(crate::Rule { lhs, rhs })
}
}
fn validate(pattern: &tt::Subtree) -> Result<(), ParseError> {
for op in parse_pattern(pattern) {
let op = match op {
Ok(it) => it,
Err(e) => {
let msg = match e {
ExpandError::InvalidRepeat => "invalid repeat".to_string(),
_ => "invalid macro definition".to_string(),
};
return Err(ParseError::Expected(msg));
}
};
match op {
Op::TokenTree(tt::TokenTree::Subtree(subtree)) | Op::Repeat { subtree, .. } => {
validate(subtree)?
}
_ => (),
}
}
Ok(())
}
#[cfg(test)]
mod tests;
|