1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
/// `mbe` (short for Macro By Example) crate contains code for handling
/// `macro_rules` macros. It uses `TokenTree` (from `ra_tt` package) as the
/// interface, although it contains some code to bridge `SyntaxNode`s and
/// `TokenTree`s as well!
macro_rules! impl_froms {
($e:ident: $($v:ident), *) => {
$(
impl From<$v> for $e {
fn from(it: $v) -> $e {
$e::$v(it)
}
}
)*
}
}
mod mbe_parser;
mod mbe_expander;
mod syntax_bridge;
mod tt_cursor;
mod subtree_source;
mod subtree_parser;
use ra_syntax::SmolStr;
use smallvec::SmallVec;
pub use tt::{Delimiter, Punct};
#[derive(Debug, PartialEq, Eq)]
pub enum ParseError {
Expected(String),
}
#[derive(Debug, PartialEq, Eq)]
pub enum ExpandError {
NoMatchingRule,
UnexpectedToken,
BindingError(String),
ConversionError,
}
pub use crate::syntax_bridge::{
ast_to_token_tree, syntax_node_to_token_tree, token_tree_to_expr, token_tree_to_items,
token_tree_to_macro_stmts, token_tree_to_pat, token_tree_to_ty,
};
/// This struct contains AST for a single `macro_rules` definition. What might
/// be very confusing is that AST has almost exactly the same shape as
/// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident`
/// and `$()*` have special meaning (see `Var` and `Repeat` data structures)
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MacroRules {
pub(crate) rules: Vec<Rule>,
}
impl MacroRules {
pub fn parse(tt: &tt::Subtree) -> Result<MacroRules, ParseError> {
mbe_parser::parse(tt)
}
pub fn expand(&self, tt: &tt::Subtree) -> Result<tt::Subtree, ExpandError> {
mbe_expander::expand(self, tt)
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Rule {
pub(crate) lhs: Subtree,
pub(crate) rhs: Subtree,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum TokenTree {
Leaf(Leaf),
Subtree(Subtree),
Repeat(Repeat),
}
impl_froms!(TokenTree: Leaf, Subtree, Repeat);
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum Leaf {
Literal(Literal),
Punct(Punct),
Ident(Ident),
Var(Var),
}
impl_froms!(Leaf: Literal, Punct, Ident, Var);
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Subtree {
pub(crate) delimiter: Delimiter,
pub(crate) token_trees: Vec<TokenTree>,
}
#[derive(Clone, Debug, Eq)]
pub(crate) enum Separator {
Literal(tt::Literal),
Ident(tt::Ident),
Puncts(SmallVec<[tt::Punct; 3]>),
}
// Note that when we compare a Separator, we just care about its textual value.
impl PartialEq for crate::Separator {
fn eq(&self, other: &crate::Separator) -> bool {
use crate::Separator::*;
match (self, other) {
(Ident(ref a), Ident(ref b)) => a.text == b.text,
(Literal(ref a), Literal(ref b)) => a.text == b.text,
(Puncts(ref a), Puncts(ref b)) if a.len() == b.len() => {
let a_iter = a.iter().map(|a| a.char);
let b_iter = b.iter().map(|b| b.char);
a_iter.eq(b_iter)
}
_ => false,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Repeat {
pub(crate) subtree: Subtree,
pub(crate) kind: RepeatKind,
pub(crate) separator: Option<Separator>,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum RepeatKind {
ZeroOrMore,
OneOrMore,
ZeroOrOne,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Literal {
pub(crate) text: SmolStr,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Ident {
pub(crate) text: SmolStr,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) struct Var {
pub(crate) text: SmolStr,
pub(crate) kind: Option<SmolStr>,
}
#[cfg(test)]
mod tests;
|