1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/// This module takes a (parsed) definition of `macro_rules` invocation, a
/// `tt::TokenTree` representing an argument of macro invocation, and produces a
/// `tt::TokenTree` for the result of the expansion.
use rustc_hash::FxHashMap;
use ra_syntax::SmolStr;
use tt::TokenId;
use crate::ExpandError;
use crate::tt_cursor::TtCursor;
pub(crate) fn expand(
rules: &crate::MacroRules,
input: &tt::Subtree,
) -> Result<tt::Subtree, ExpandError> {
rules.rules.iter().find_map(|it| expand_rule(it, input).ok()).ok_or(ExpandError::NoMatchingRule)
}
fn expand_rule(rule: &crate::Rule, input: &tt::Subtree) -> Result<tt::Subtree, ExpandError> {
let mut input = TtCursor::new(input);
let bindings = match_lhs(&rule.lhs, &mut input)?;
if !input.is_eof() {
return Err(ExpandError::UnexpectedToken);
}
expand_subtree(&rule.rhs, &bindings, &mut Vec::new())
}
/// The actual algorithm for expansion is not too hard, but is pretty tricky.
/// `Bindings` structure is the key to understanding what we are doing here.
///
/// On the high level, it stores mapping from meta variables to the bits of
/// syntax it should be substituted with. For example, if `$e:expr` is matched
/// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`.
///
/// The tricky bit is dealing with repetitions (`$()*`). Consider this example:
///
/// ```not_rust
/// macro_rules! foo {
/// ($($ i:ident $($ e:expr),*);*) => {
/// $(fn $ i() { $($ e);*; })*
/// }
/// }
/// foo! { foo 1,2,3; bar 4,5,6 }
/// ```
///
/// Here, the `$i` meta variable is matched first with `foo` and then with
/// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`.
///
/// To represent such "multi-mappings", we use a recursive structures: we map
/// variables not to values, but to *lists* of values or other lists (that is,
/// to the trees).
///
/// For the above example, the bindings would store
///
/// ```not_rust
/// i -> [foo, bar]
/// e -> [[1, 2, 3], [4, 5, 6]]
/// ```
///
/// We construct `Bindings` in the `match_lhs`. The interesting case is
/// `TokenTree::Repeat`, where we use `push_nested` to create the desired
/// nesting structure.
///
/// The other side of the puzzle is `expand_subtree`, where we use the bindings
/// to substitute meta variables in the output template. When expanding, we
/// maintain a `nesting` stack of indices which tells us which occurrence from
/// the `Bindings` we should take. We push to the stack when we enter a
/// repetition.
///
/// In other words, `Bindings` is a *multi* mapping from `SmolStr` to
/// `tt::TokenTree`, where the index to select a particular `TokenTree` among
/// many is not a plain `usize`, but an `&[usize]`.
#[derive(Debug, Default)]
struct Bindings {
inner: FxHashMap<SmolStr, Binding>,
}
#[derive(Debug)]
enum Binding {
Simple(tt::TokenTree),
Nested(Vec<Binding>),
}
impl Bindings {
fn get(&self, name: &SmolStr, nesting: &[usize]) -> Result<&tt::TokenTree, ExpandError> {
let mut b = self
.inner
.get(name)
.ok_or(ExpandError::BindingError(format!("could not find binding `{}`", name)))?;
for &idx in nesting.iter() {
b = match b {
Binding::Simple(_) => break,
Binding::Nested(bs) => bs.get(idx).ok_or(ExpandError::BindingError(format!(
"could not find nested binding `{}`",
name
)))?,
};
}
match b {
Binding::Simple(it) => Ok(it),
Binding::Nested(_) => Err(ExpandError::BindingError(format!(
"expected simple binding, found nested binding `{}`",
name
))),
}
}
fn push_nested(&mut self, nested: Bindings) -> Result<(), ExpandError> {
for (key, value) in nested.inner {
if !self.inner.contains_key(&key) {
self.inner.insert(key.clone(), Binding::Nested(Vec::new()));
}
match self.inner.get_mut(&key) {
Some(Binding::Nested(it)) => it.push(value),
_ => {
return Err(ExpandError::BindingError(format!(
"could not find binding `{}`",
key
)));
}
}
}
Ok(())
}
}
fn match_lhs(pattern: &crate::Subtree, input: &mut TtCursor) -> Result<Bindings, ExpandError> {
let mut res = Bindings::default();
for pat in pattern.token_trees.iter() {
match pat {
crate::TokenTree::Leaf(leaf) => match leaf {
crate::Leaf::Var(crate::Var { text, kind }) => {
let kind = kind.clone().ok_or(ExpandError::UnexpectedToken)?;
match kind.as_str() {
"ident" => {
let ident =
input.eat_ident().ok_or(ExpandError::UnexpectedToken)?.clone();
res.inner.insert(
text.clone(),
Binding::Simple(tt::Leaf::from(ident).into()),
);
}
"path" => {
let path =
input.eat_path().ok_or(ExpandError::UnexpectedToken)?.clone();
res.inner.insert(text.clone(), Binding::Simple(path.into()));
}
_ => return Err(ExpandError::UnexpectedToken),
}
}
crate::Leaf::Punct(punct) => {
if input.eat_punct() != Some(punct) {
return Err(ExpandError::UnexpectedToken);
}
}
crate::Leaf::Ident(ident) => {
if input.eat_ident().map(|i| &i.text) != Some(&ident.text) {
return Err(ExpandError::UnexpectedToken);
}
}
_ => return Err(ExpandError::UnexpectedToken),
},
crate::TokenTree::Repeat(crate::Repeat { subtree, kind: _, separator }) => {
// Dirty hack to make macro-expansion terminate.
// This should be replaced by a propper macro-by-example implementation
let mut limit = 128;
while let Ok(nested) = match_lhs(subtree, input) {
limit -= 1;
if limit == 0 {
break;
}
res.push_nested(nested)?;
if let Some(separator) = *separator {
if !input.is_eof() {
if input.eat_punct().map(|p| p.char) != Some(separator) {
return Err(ExpandError::UnexpectedToken);
}
}
}
}
}
_ => {}
}
}
Ok(res)
}
fn expand_subtree(
template: &crate::Subtree,
bindings: &Bindings,
nesting: &mut Vec<usize>,
) -> Result<tt::Subtree, ExpandError> {
let token_trees = template
.token_trees
.iter()
.map(|it| expand_tt(it, bindings, nesting))
.collect::<Result<Vec<_>, ExpandError>>()?;
Ok(tt::Subtree { token_trees, delimiter: template.delimiter })
}
fn expand_tt(
template: &crate::TokenTree,
bindings: &Bindings,
nesting: &mut Vec<usize>,
) -> Result<tt::TokenTree, ExpandError> {
let res: tt::TokenTree = match template {
crate::TokenTree::Subtree(subtree) => expand_subtree(subtree, bindings, nesting)?.into(),
crate::TokenTree::Repeat(repeat) => {
let mut token_trees = Vec::new();
nesting.push(0);
// Dirty hack to make macro-expansion terminate.
// This should be replaced by a propper macro-by-example implementation
let mut limit = 128;
while let Ok(t) = expand_subtree(&repeat.subtree, bindings, nesting) {
limit -= 1;
if limit == 0 {
break;
}
let idx = nesting.pop().unwrap();
nesting.push(idx + 1);
token_trees.push(t.into())
}
nesting.pop().unwrap();
tt::Subtree { token_trees, delimiter: tt::Delimiter::None }.into()
}
crate::TokenTree::Leaf(leaf) => match leaf {
crate::Leaf::Ident(ident) => {
tt::Leaf::from(tt::Ident { text: ident.text.clone(), id: TokenId::unspecified() })
.into()
}
crate::Leaf::Punct(punct) => tt::Leaf::from(punct.clone()).into(),
crate::Leaf::Var(v) => bindings.get(&v.text, nesting)?.clone(),
crate::Leaf::Literal(l) => tt::Leaf::from(tt::Literal { text: l.text.clone() }).into(),
},
};
Ok(res)
}
#[cfg(test)]
mod tests {
use ra_syntax::{ast, AstNode};
use super::*;
use crate::ast_to_token_tree;
#[test]
fn test_expand_rule() {
assert_err(
"($i:ident) => ($j)",
"foo!{a}",
ExpandError::BindingError(String::from("could not find binding `j`")),
);
assert_err(
"($($i:ident);*) => ($i)",
"foo!{a}",
ExpandError::BindingError(String::from(
"expected simple binding, found nested binding `i`",
)),
);
assert_err("($i) => ($i)", "foo!{a}", ExpandError::UnexpectedToken);
assert_err("($i:) => ($i)", "foo!{a}", ExpandError::UnexpectedToken);
}
fn assert_err(macro_body: &str, invocation: &str, err: ExpandError) {
assert_eq!(expand_first(&create_rules(&format_macro(macro_body)), invocation), Err(err));
}
fn format_macro(macro_body: &str) -> String {
format!(
"
macro_rules! foo {{
{}
}}
",
macro_body
)
}
fn create_rules(macro_definition: &str) -> crate::MacroRules {
let source_file = ast::SourceFile::parse(macro_definition);
let macro_definition =
source_file.syntax().descendants().find_map(ast::MacroCall::cast).unwrap();
let (definition_tt, _) = ast_to_token_tree(macro_definition.token_tree().unwrap()).unwrap();
crate::MacroRules::parse(&definition_tt).unwrap()
}
fn expand_first(
rules: &crate::MacroRules,
invocation: &str,
) -> Result<tt::Subtree, ExpandError> {
let source_file = ast::SourceFile::parse(invocation);
let macro_invocation =
source_file.syntax().descendants().find_map(ast::MacroCall::cast).unwrap();
let (invocation_tt, _) = ast_to_token_tree(macro_invocation.token_tree().unwrap()).unwrap();
expand_rule(&rules.rules[0], &invocation_tt)
}
}
|