aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_mbe/src/mbe_expander.rs
blob: 1ad8b9f8a580ad03012bf5c3840363cdaa11c951 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//! This module takes a (parsed) definition of `macro_rules` invocation, a
//! `tt::TokenTree` representing an argument of macro invocation, and produces a
//! `tt::TokenTree` for the result of the expansion.

mod matcher;
mod transcriber;

use rustc_hash::FxHashMap;
use syntax::SmolStr;

use crate::{ExpandError, ExpandResult};

pub(crate) fn expand(rules: &crate::MacroRules, input: &tt::Subtree) -> ExpandResult<tt::Subtree> {
    expand_rules(&rules.rules, input)
}

fn expand_rules(rules: &[crate::Rule], input: &tt::Subtree) -> ExpandResult<tt::Subtree> {
    let mut match_: Option<(matcher::Match, &crate::Rule)> = None;
    for rule in rules {
        let new_match = match matcher::match_(&rule.lhs, input) {
            Ok(m) => m,
            Err(_e) => {
                // error in pattern parsing
                continue;
            }
        };
        if new_match.err.is_none() {
            // If we find a rule that applies without errors, we're done.
            // Unconditionally returning the transcription here makes the
            // `test_repeat_bad_var` test fail.
            let ExpandResult(res, transcribe_err) =
                transcriber::transcribe(&rule.rhs, &new_match.bindings);
            if transcribe_err.is_none() {
                return ExpandResult::ok(res);
            }
        }
        // Use the rule if we matched more tokens, or had fewer errors
        if let Some((prev_match, _)) = &match_ {
            if (new_match.unmatched_tts, new_match.err_count)
                < (prev_match.unmatched_tts, prev_match.err_count)
            {
                match_ = Some((new_match, rule));
            }
        } else {
            match_ = Some((new_match, rule));
        }
    }
    if let Some((match_, rule)) = match_ {
        // if we got here, there was no match without errors
        let ExpandResult(result, transcribe_err) =
            transcriber::transcribe(&rule.rhs, &match_.bindings);
        ExpandResult(result, match_.err.or(transcribe_err))
    } else {
        ExpandResult(tt::Subtree::default(), Some(ExpandError::NoMatchingRule))
    }
}

/// The actual algorithm for expansion is not too hard, but is pretty tricky.
/// `Bindings` structure is the key to understanding what we are doing here.
///
/// On the high level, it stores mapping from meta variables to the bits of
/// syntax it should be substituted with. For example, if `$e:expr` is matched
/// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`.
///
/// The tricky bit is dealing with repetitions (`$()*`). Consider this example:
///
/// ```not_rust
/// macro_rules! foo {
///     ($($ i:ident $($ e:expr),*);*) => {
///         $(fn $ i() { $($ e);*; })*
///     }
/// }
/// foo! { foo 1,2,3; bar 4,5,6 }
/// ```
///
/// Here, the `$i` meta variable is matched first with `foo` and then with
/// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`.
///
/// To represent such "multi-mappings", we use a recursive structures: we map
/// variables not to values, but to *lists* of values or other lists (that is,
/// to the trees).
///
/// For the above example, the bindings would store
///
/// ```not_rust
/// i -> [foo, bar]
/// e -> [[1, 2, 3], [4, 5, 6]]
/// ```
///
/// We construct `Bindings` in the `match_lhs`. The interesting case is
/// `TokenTree::Repeat`, where we use `push_nested` to create the desired
/// nesting structure.
///
/// The other side of the puzzle is `expand_subtree`, where we use the bindings
/// to substitute meta variables in the output template. When expanding, we
/// maintain a `nesting` stack of indices which tells us which occurrence from
/// the `Bindings` we should take. We push to the stack when we enter a
/// repetition.
///
/// In other words, `Bindings` is a *multi* mapping from `SmolStr` to
/// `tt::TokenTree`, where the index to select a particular `TokenTree` among
/// many is not a plain `usize`, but an `&[usize]`.
#[derive(Debug, Default)]
struct Bindings {
    inner: FxHashMap<SmolStr, Binding>,
}

#[derive(Debug)]
enum Binding {
    Fragment(Fragment),
    Nested(Vec<Binding>),
    Empty,
}

#[derive(Debug, Clone)]
enum Fragment {
    /// token fragments are just copy-pasted into the output
    Tokens(tt::TokenTree),
    /// Ast fragments are inserted with fake delimiters, so as to make things
    /// like `$i * 2` where `$i = 1 + 1` work as expectd.
    Ast(tt::TokenTree),
}

#[cfg(test)]
mod tests {
    use syntax::{ast, AstNode};

    use super::*;
    use crate::ast_to_token_tree;

    #[test]
    fn test_expand_rule() {
        assert_err(
            "($($i:ident);*) => ($i)",
            "foo!{a}",
            ExpandError::BindingError(String::from(
                "expected simple binding, found nested binding `i`",
            )),
        );

        // FIXME:
        // Add an err test case for ($($i:ident)) => ($())
    }

    fn assert_err(macro_body: &str, invocation: &str, err: ExpandError) {
        assert_eq!(expand_first(&create_rules(&format_macro(macro_body)), invocation).1, Some(err));
    }

    fn format_macro(macro_body: &str) -> String {
        format!(
            "
        macro_rules! foo {{
            {}
        }}
",
            macro_body
        )
    }

    fn create_rules(macro_definition: &str) -> crate::MacroRules {
        let source_file = ast::SourceFile::parse(macro_definition).ok().unwrap();
        let macro_definition =
            source_file.syntax().descendants().find_map(ast::MacroCall::cast).unwrap();

        let (definition_tt, _) =
            ast_to_token_tree(&macro_definition.token_tree().unwrap()).unwrap();
        crate::MacroRules::parse(&definition_tt).unwrap()
    }

    fn expand_first(rules: &crate::MacroRules, invocation: &str) -> ExpandResult<tt::Subtree> {
        let source_file = ast::SourceFile::parse(invocation).ok().unwrap();
        let macro_invocation =
            source_file.syntax().descendants().find_map(ast::MacroCall::cast).unwrap();

        let (invocation_tt, _) =
            ast_to_token_tree(&macro_invocation.token_tree().unwrap()).unwrap();

        expand_rules(&rules.rules, &invocation_tt)
    }
}