1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
use ra_parser::{TokenSource, TreeSink, ParseError};
use ra_syntax::{
AstNode, SyntaxNode, TextRange, SyntaxKind, SmolStr, SyntaxTreeBuilder, TreeArc, SyntaxElement,
ast, SyntaxKind::*, TextUnit
};
/// Maps `tt::TokenId` to the relative range of the original token.
#[derive(Default)]
pub struct TokenMap {
/// Maps `tt::TokenId` to the *relative* source range.
tokens: Vec<TextRange>,
}
/// Convert the syntax tree (what user has written) to a `TokenTree` (what macro
/// will consume).
pub fn ast_to_token_tree(ast: &ast::TokenTree) -> Option<(tt::Subtree, TokenMap)> {
let mut token_map = TokenMap::default();
let node = ast.syntax();
let tt = convert_tt(&mut token_map, node.range().start(), node)?;
Some((tt, token_map))
}
/// Parses the token tree (result of macro expansion) as a sequence of items
pub fn token_tree_to_ast_item_list(tt: &tt::Subtree) -> TreeArc<ast::SourceFile> {
let token_source = TtTokenSource::new(tt);
let mut tree_sink = TtTreeSink::new(&token_source.tokens);
ra_parser::parse(&token_source, &mut tree_sink);
let syntax = tree_sink.inner.finish();
ast::SourceFile::cast(&syntax).unwrap().to_owned()
}
impl TokenMap {
pub fn relative_range_of(&self, tt: tt::TokenId) -> Option<TextRange> {
let idx = tt.0 as usize;
self.tokens.get(idx).map(|&it| it)
}
fn alloc(&mut self, relative_range: TextRange) -> tt::TokenId {
let id = self.tokens.len();
self.tokens.push(relative_range);
tt::TokenId(id as u32)
}
}
fn convert_tt(
token_map: &mut TokenMap,
global_offset: TextUnit,
tt: &SyntaxNode,
) -> Option<tt::Subtree> {
let first_child = tt.first_child_or_token()?;
let last_child = tt.last_child_or_token()?;
let delimiter = match (first_child.kind(), last_child.kind()) {
(L_PAREN, R_PAREN) => tt::Delimiter::Parenthesis,
(L_CURLY, R_CURLY) => tt::Delimiter::Brace,
(L_BRACK, R_BRACK) => tt::Delimiter::Bracket,
_ => return None,
};
let mut token_trees = Vec::new();
for child in tt.children_with_tokens().skip(1) {
if child == first_child || child == last_child || child.kind().is_trivia() {
continue;
}
match child {
SyntaxElement::Token(token) => {
if token.kind().is_punct() {
let mut prev = None;
for char in token.text().chars() {
if let Some(char) = prev {
token_trees.push(
tt::Leaf::from(tt::Punct { char, spacing: tt::Spacing::Joint })
.into(),
);
}
prev = Some(char)
}
if let Some(char) = prev {
token_trees.push(
tt::Leaf::from(tt::Punct { char, spacing: tt::Spacing::Alone }).into(),
);
}
} else {
let child = if token.kind().is_keyword() || token.kind() == IDENT {
let relative_range = token.range() - global_offset;
let id = token_map.alloc(relative_range);
let text = token.text().clone();
tt::Leaf::from(tt::Ident { text, id }).into()
} else if token.kind().is_literal() {
tt::Leaf::from(tt::Literal { text: token.text().clone() }).into()
} else {
return None;
};
token_trees.push(child);
}
}
SyntaxElement::Node(node) => {
let child = convert_tt(token_map, global_offset, node)?.into();
token_trees.push(child);
}
};
}
let res = tt::Subtree { delimiter, token_trees };
Some(res)
}
struct TtTokenSource {
tokens: Vec<TtToken>,
}
struct TtToken {
kind: SyntaxKind,
is_joint_to_next: bool,
text: SmolStr,
}
impl TtTokenSource {
fn new(tt: &tt::Subtree) -> TtTokenSource {
let mut res = TtTokenSource { tokens: Vec::new() };
res.convert_subtree(tt);
res
}
fn convert_subtree(&mut self, sub: &tt::Subtree) {
self.push_delim(sub.delimiter, false);
sub.token_trees.iter().for_each(|tt| self.convert_tt(tt));
self.push_delim(sub.delimiter, true)
}
fn convert_tt(&mut self, tt: &tt::TokenTree) {
match tt {
tt::TokenTree::Leaf(token) => self.convert_token(token),
tt::TokenTree::Subtree(sub) => self.convert_subtree(sub),
}
}
fn convert_token(&mut self, token: &tt::Leaf) {
let tok = match token {
tt::Leaf::Literal(l) => TtToken {
kind: SyntaxKind::INT_NUMBER, // FIXME
is_joint_to_next: false,
text: l.text.clone(),
},
tt::Leaf::Punct(p) => {
let kind = match p.char {
// lexer may produce combpund tokens for these ones
'.' => DOT,
':' => COLON,
'=' => EQ,
'!' => EXCL,
'-' => MINUS,
c => SyntaxKind::from_char(c).unwrap(),
};
let text = {
let mut buf = [0u8; 4];
let s: &str = p.char.encode_utf8(&mut buf);
SmolStr::new(s)
};
TtToken { kind, is_joint_to_next: p.spacing == tt::Spacing::Joint, text }
}
tt::Leaf::Ident(ident) => {
let kind = SyntaxKind::from_keyword(ident.text.as_str()).unwrap_or(IDENT);
TtToken { kind, is_joint_to_next: false, text: ident.text.clone() }
}
};
self.tokens.push(tok)
}
fn push_delim(&mut self, d: tt::Delimiter, closing: bool) {
let (kinds, texts) = match d {
tt::Delimiter::Parenthesis => ([L_PAREN, R_PAREN], "()"),
tt::Delimiter::Brace => ([L_CURLY, R_CURLY], "{}"),
tt::Delimiter::Bracket => ([L_BRACK, R_BRACK], "[]"),
tt::Delimiter::None => return,
};
let idx = closing as usize;
let kind = kinds[idx];
let text = &texts[idx..texts.len() - (1 - idx)];
let tok = TtToken { kind, is_joint_to_next: false, text: SmolStr::new(text) };
self.tokens.push(tok)
}
}
impl TokenSource for TtTokenSource {
fn token_kind(&self, pos: usize) -> SyntaxKind {
if let Some(tok) = self.tokens.get(pos) {
tok.kind
} else {
SyntaxKind::EOF
}
}
fn is_token_joint_to_next(&self, pos: usize) -> bool {
self.tokens[pos].is_joint_to_next
}
fn is_keyword(&self, pos: usize, kw: &str) -> bool {
self.tokens[pos].text == *kw
}
}
#[derive(Default)]
struct TtTreeSink<'a> {
buf: String,
tokens: &'a [TtToken],
text_pos: TextUnit,
token_pos: usize,
inner: SyntaxTreeBuilder,
}
impl<'a> TtTreeSink<'a> {
fn new(tokens: &'a [TtToken]) -> TtTreeSink {
TtTreeSink {
buf: String::new(),
tokens,
text_pos: 0.into(),
token_pos: 0,
inner: SyntaxTreeBuilder::default(),
}
}
}
impl<'a> TreeSink for TtTreeSink<'a> {
fn token(&mut self, kind: SyntaxKind, n_tokens: u8) {
for _ in 0..n_tokens {
self.buf += self.tokens[self.token_pos].text.as_str();
self.token_pos += 1;
}
self.text_pos += TextUnit::of_str(&self.buf);
let text = SmolStr::new(self.buf.as_str());
self.buf.clear();
self.inner.token(kind, text)
}
fn start_node(&mut self, kind: SyntaxKind) {
self.inner.start_node(kind);
}
fn finish_node(&mut self) {
self.inner.finish_node();
}
fn error(&mut self, error: ParseError) {
self.inner.error(error, self.text_pos)
}
}
|