1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
//! This module is responsible for matching a search pattern against a node in the AST. In the
//! process of matching, placeholder values are recorded.
use crate::{
parsing::{Placeholder, SsrTemplate},
SsrMatches, SsrPattern, SsrRule,
};
use hir::Semantics;
use ra_db::FileRange;
use ra_syntax::ast::{AstNode, AstToken};
use ra_syntax::{ast, SyntaxElement, SyntaxElementChildren, SyntaxKind, SyntaxNode, SyntaxToken};
use rustc_hash::FxHashMap;
use std::{cell::Cell, iter::Peekable};
// Creates a match error. If we're currently attempting to match some code that we thought we were
// going to match, as indicated by the --debug-snippet flag, then populate the reason field.
macro_rules! match_error {
($e:expr) => {{
MatchFailed {
reason: if recording_match_fail_reasons() {
Some(format!("{}", $e))
} else {
None
}
}
}};
($fmt:expr, $($arg:tt)+) => {{
MatchFailed {
reason: if recording_match_fail_reasons() {
Some(format!($fmt, $($arg)+))
} else {
None
}
}
}};
}
// Fails the current match attempt, recording the supplied reason if we're recording match fail reasons.
macro_rules! fail_match {
($($args:tt)*) => {return Err(match_error!($($args)*))};
}
/// Information about a match that was found.
#[derive(Debug)]
pub struct Match {
pub(crate) range: FileRange,
pub(crate) matched_node: SyntaxNode,
pub(crate) placeholder_values: FxHashMap<Var, PlaceholderMatch>,
pub(crate) ignored_comments: Vec<ast::Comment>,
// A copy of the template for the rule that produced this match. We store this on the match for
// if/when we do replacement.
pub(crate) template: SsrTemplate,
}
/// Represents a `$var` in an SSR query.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub(crate) struct Var(pub String);
/// Information about a placeholder bound in a match.
#[derive(Debug)]
pub(crate) struct PlaceholderMatch {
/// The node that the placeholder matched to. If set, then we'll search for further matches
/// within this node. It isn't set when we match tokens within a macro call's token tree.
pub(crate) node: Option<SyntaxNode>,
pub(crate) range: FileRange,
/// More matches, found within `node`.
pub(crate) inner_matches: SsrMatches,
}
#[derive(Debug)]
pub(crate) struct MatchFailureReason {
pub(crate) reason: String,
}
/// An "error" indicating that matching failed. Use the fail_match! macro to create and return this.
#[derive(Clone)]
pub(crate) struct MatchFailed {
/// The reason why we failed to match. Only present when debug_active true in call to
/// `get_match`.
pub(crate) reason: Option<String>,
}
/// Checks if `code` matches the search pattern found in `search_scope`, returning information about
/// the match, if it does. Since we only do matching in this module and searching is done by the
/// parent module, we don't populate nested matches.
pub(crate) fn get_match(
debug_active: bool,
rule: &SsrRule,
code: &SyntaxNode,
restrict_range: &Option<FileRange>,
sema: &Semantics<ra_ide_db::RootDatabase>,
) -> Result<Match, MatchFailed> {
record_match_fails_reasons_scope(debug_active, || {
MatchState::try_match(rule, code, restrict_range, sema)
})
}
/// Inputs to matching. This cannot be part of `MatchState`, since we mutate `MatchState` and in at
/// least one case need to hold a borrow of a placeholder from the input pattern while calling a
/// mutable `MatchState` method.
struct MatchInputs<'pattern> {
ssr_pattern: &'pattern SsrPattern,
}
/// State used while attempting to match our search pattern against a particular node of the AST.
struct MatchState<'db, 'sema> {
sema: &'sema Semantics<'db, ra_ide_db::RootDatabase>,
/// If any placeholders come from anywhere outside of this range, then the match will be
/// rejected.
restrict_range: Option<FileRange>,
/// The match that we're building. We do two passes for a successful match. On the first pass,
/// this is None so that we can avoid doing things like storing copies of what placeholders
/// matched to. If that pass succeeds, then we do a second pass where we collect those details.
/// This means that if we have a pattern like `$a.foo()` we won't do an insert into the
/// placeholders map for every single method call in the codebase. Instead we'll discard all the
/// method calls that aren't calls to `foo` on the first pass and only insert into the
/// placeholders map on the second pass. Likewise for ignored comments.
match_out: Option<Match>,
}
impl<'db, 'sema> MatchState<'db, 'sema> {
fn try_match(
rule: &SsrRule,
code: &SyntaxNode,
restrict_range: &Option<FileRange>,
sema: &'sema Semantics<'db, ra_ide_db::RootDatabase>,
) -> Result<Match, MatchFailed> {
let mut match_state =
MatchState { sema, restrict_range: restrict_range.clone(), match_out: None };
let match_inputs = MatchInputs { ssr_pattern: &rule.pattern };
let pattern_tree = rule.pattern.tree_for_kind(code.kind())?;
// First pass at matching, where we check that node types and idents match.
match_state.attempt_match_node(&match_inputs, &pattern_tree, code)?;
match_state.validate_range(&sema.original_range(code))?;
match_state.match_out = Some(Match {
range: sema.original_range(code),
matched_node: code.clone(),
placeholder_values: FxHashMap::default(),
ignored_comments: Vec::new(),
template: rule.template.clone(),
});
// Second matching pass, where we record placeholder matches, ignored comments and maybe do
// any other more expensive checks that we didn't want to do on the first pass.
match_state.attempt_match_node(&match_inputs, &pattern_tree, code)?;
Ok(match_state.match_out.unwrap())
}
/// Checks that `range` is within the permitted range if any. This is applicable when we're
/// processing a macro expansion and we want to fail the match if we're working with a node that
/// didn't originate from the token tree of the macro call.
fn validate_range(&self, range: &FileRange) -> Result<(), MatchFailed> {
if let Some(restrict_range) = &self.restrict_range {
if restrict_range.file_id != range.file_id
|| !restrict_range.range.contains_range(range.range)
{
fail_match!("Node originated from a macro");
}
}
Ok(())
}
fn attempt_match_node(
&mut self,
match_inputs: &MatchInputs,
pattern: &SyntaxNode,
code: &SyntaxNode,
) -> Result<(), MatchFailed> {
// Handle placeholders.
if let Some(placeholder) =
match_inputs.get_placeholder(&SyntaxElement::Node(pattern.clone()))
{
if self.match_out.is_none() {
return Ok(());
}
let original_range = self.sema.original_range(code);
// We validated the range for the node when we started the match, so the placeholder
// probably can't fail range validation, but just to be safe...
self.validate_range(&original_range)?;
if let Some(match_out) = &mut self.match_out {
match_out.placeholder_values.insert(
Var(placeholder.ident.to_string()),
PlaceholderMatch::new(code, original_range),
);
}
return Ok(());
}
// Non-placeholders.
if pattern.kind() != code.kind() {
fail_match!("Pattern had a {:?}, code had {:?}", pattern.kind(), code.kind());
}
// Some kinds of nodes have special handling. For everything else, we fall back to default
// matching.
match code.kind() {
SyntaxKind::RECORD_FIELD_LIST => {
self.attempt_match_record_field_list(match_inputs, pattern, code)
}
SyntaxKind::TOKEN_TREE => self.attempt_match_token_tree(match_inputs, pattern, code),
_ => self.attempt_match_node_children(match_inputs, pattern, code),
}
}
fn attempt_match_node_children(
&mut self,
match_inputs: &MatchInputs,
pattern: &SyntaxNode,
code: &SyntaxNode,
) -> Result<(), MatchFailed> {
self.attempt_match_sequences(
match_inputs,
PatternIterator::new(pattern),
code.children_with_tokens(),
)
}
fn attempt_match_sequences(
&mut self,
match_inputs: &MatchInputs,
pattern_it: PatternIterator,
mut code_it: SyntaxElementChildren,
) -> Result<(), MatchFailed> {
let mut pattern_it = pattern_it.peekable();
loop {
match self.next_non_trivial(&mut code_it) {
None => {
if let Some(p) = pattern_it.next() {
fail_match!("Part of the pattern was unmatched: {:?}", p);
}
return Ok(());
}
Some(SyntaxElement::Token(c)) => {
self.attempt_match_token(&mut pattern_it, &c)?;
}
Some(SyntaxElement::Node(c)) => match pattern_it.next() {
Some(SyntaxElement::Node(p)) => {
self.attempt_match_node(match_inputs, &p, &c)?;
}
Some(p) => fail_match!("Pattern wanted '{}', code has {}", p, c.text()),
None => fail_match!("Pattern reached end, code has {}", c.text()),
},
}
}
}
fn attempt_match_token(
&mut self,
pattern: &mut Peekable<PatternIterator>,
code: &ra_syntax::SyntaxToken,
) -> Result<(), MatchFailed> {
self.record_ignored_comments(code);
// Ignore whitespace and comments.
if code.kind().is_trivia() {
return Ok(());
}
if let Some(SyntaxElement::Token(p)) = pattern.peek() {
// If the code has a comma and the pattern is about to close something, then accept the
// comma without advancing the pattern. i.e. ignore trailing commas.
if code.kind() == SyntaxKind::COMMA && is_closing_token(p.kind()) {
return Ok(());
}
// Conversely, if the pattern has a comma and the code doesn't, skip that part of the
// pattern and continue to match the code.
if p.kind() == SyntaxKind::COMMA && is_closing_token(code.kind()) {
pattern.next();
}
}
// Consume an element from the pattern and make sure it matches.
match pattern.next() {
Some(SyntaxElement::Token(p)) => {
if p.kind() != code.kind() || p.text() != code.text() {
fail_match!(
"Pattern wanted token '{}' ({:?}), but code had token '{}' ({:?})",
p.text(),
p.kind(),
code.text(),
code.kind()
)
}
}
Some(SyntaxElement::Node(p)) => {
// Not sure if this is actually reachable.
fail_match!(
"Pattern wanted {:?}, but code had token '{}' ({:?})",
p,
code.text(),
code.kind()
);
}
None => {
fail_match!("Pattern exhausted, while code remains: `{}`", code.text());
}
}
Ok(())
}
/// We want to allow the records to match in any order, so we have special matching logic for
/// them.
fn attempt_match_record_field_list(
&mut self,
match_inputs: &MatchInputs,
pattern: &SyntaxNode,
code: &SyntaxNode,
) -> Result<(), MatchFailed> {
// Build a map keyed by field name.
let mut fields_by_name = FxHashMap::default();
for child in code.children() {
if let Some(record) = ast::RecordField::cast(child.clone()) {
if let Some(name) = record.field_name() {
fields_by_name.insert(name.text().clone(), child.clone());
}
}
}
for p in pattern.children_with_tokens() {
if let SyntaxElement::Node(p) = p {
if let Some(name_element) = p.first_child_or_token() {
if match_inputs.get_placeholder(&name_element).is_some() {
// If the pattern is using placeholders for field names then order
// independence doesn't make sense. Fall back to regular ordered
// matching.
return self.attempt_match_node_children(match_inputs, pattern, code);
}
if let Some(ident) = only_ident(name_element) {
let code_record = fields_by_name.remove(ident.text()).ok_or_else(|| {
match_error!(
"Placeholder has record field '{}', but code doesn't",
ident
)
})?;
self.attempt_match_node(match_inputs, &p, &code_record)?;
}
}
}
}
if let Some(unmatched_fields) = fields_by_name.keys().next() {
fail_match!(
"{} field(s) of a record literal failed to match, starting with {}",
fields_by_name.len(),
unmatched_fields
);
}
Ok(())
}
/// Outside of token trees, a placeholder can only match a single AST node, whereas in a token
/// tree it can match a sequence of tokens. Note, that this code will only be used when the
/// pattern matches the macro invocation. For matches within the macro call, we'll already have
/// expanded the macro.
fn attempt_match_token_tree(
&mut self,
match_inputs: &MatchInputs,
pattern: &SyntaxNode,
code: &ra_syntax::SyntaxNode,
) -> Result<(), MatchFailed> {
let mut pattern = PatternIterator::new(pattern).peekable();
let mut children = code.children_with_tokens();
while let Some(child) = children.next() {
if let Some(placeholder) = pattern.peek().and_then(|p| match_inputs.get_placeholder(p))
{
pattern.next();
let next_pattern_token = pattern
.peek()
.and_then(|p| match p {
SyntaxElement::Token(t) => Some(t.clone()),
SyntaxElement::Node(n) => n.first_token(),
})
.map(|p| p.text().to_string());
let first_matched_token = child.clone();
let mut last_matched_token = child;
// Read code tokens util we reach one equal to the next token from our pattern
// or we reach the end of the token tree.
while let Some(next) = children.next() {
match &next {
SyntaxElement::Token(t) => {
if Some(t.to_string()) == next_pattern_token {
pattern.next();
break;
}
}
SyntaxElement::Node(n) => {
if let Some(first_token) = n.first_token() {
if Some(first_token.to_string()) == next_pattern_token {
if let Some(SyntaxElement::Node(p)) = pattern.next() {
// We have a subtree that starts with the next token in our pattern.
self.attempt_match_token_tree(match_inputs, &p, &n)?;
break;
}
}
}
}
};
last_matched_token = next;
}
if let Some(match_out) = &mut self.match_out {
match_out.placeholder_values.insert(
Var(placeholder.ident.to_string()),
PlaceholderMatch::from_range(FileRange {
file_id: self.sema.original_range(code).file_id,
range: first_matched_token
.text_range()
.cover(last_matched_token.text_range()),
}),
);
}
continue;
}
// Match literal (non-placeholder) tokens.
match child {
SyntaxElement::Token(token) => {
self.attempt_match_token(&mut pattern, &token)?;
}
SyntaxElement::Node(node) => match pattern.next() {
Some(SyntaxElement::Node(p)) => {
self.attempt_match_token_tree(match_inputs, &p, &node)?;
}
Some(SyntaxElement::Token(p)) => fail_match!(
"Pattern has token '{}', code has subtree '{}'",
p.text(),
node.text()
),
None => fail_match!("Pattern has nothing, code has '{}'", node.text()),
},
}
}
if let Some(p) = pattern.next() {
fail_match!("Reached end of token tree in code, but pattern still has {:?}", p);
}
Ok(())
}
fn next_non_trivial(&mut self, code_it: &mut SyntaxElementChildren) -> Option<SyntaxElement> {
loop {
let c = code_it.next();
if let Some(SyntaxElement::Token(t)) = &c {
self.record_ignored_comments(t);
if t.kind().is_trivia() {
continue;
}
}
return c;
}
}
fn record_ignored_comments(&mut self, token: &SyntaxToken) {
if token.kind() == SyntaxKind::COMMENT {
if let Some(match_out) = &mut self.match_out {
if let Some(comment) = ast::Comment::cast(token.clone()) {
match_out.ignored_comments.push(comment);
}
}
}
}
}
impl MatchInputs<'_> {
fn get_placeholder(&self, element: &SyntaxElement) -> Option<&Placeholder> {
only_ident(element.clone())
.and_then(|ident| self.ssr_pattern.placeholders_by_stand_in.get(ident.text()))
}
}
fn is_closing_token(kind: SyntaxKind) -> bool {
kind == SyntaxKind::R_PAREN || kind == SyntaxKind::R_CURLY || kind == SyntaxKind::R_BRACK
}
pub(crate) fn record_match_fails_reasons_scope<F, T>(debug_active: bool, f: F) -> T
where
F: Fn() -> T,
{
RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(debug_active));
let res = f();
RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(false));
res
}
// For performance reasons, we don't want to record the reason why every match fails, only the bit
// of code that the user indicated they thought would match. We use a thread local to indicate when
// we are trying to match that bit of code. This saves us having to pass a boolean into all the bits
// of code that can make the decision to not match.
thread_local! {
pub static RECORDING_MATCH_FAIL_REASONS: Cell<bool> = Cell::new(false);
}
fn recording_match_fail_reasons() -> bool {
RECORDING_MATCH_FAIL_REASONS.with(|c| c.get())
}
impl PlaceholderMatch {
fn new(node: &SyntaxNode, range: FileRange) -> Self {
Self { node: Some(node.clone()), range, inner_matches: SsrMatches::default() }
}
fn from_range(range: FileRange) -> Self {
Self { node: None, range, inner_matches: SsrMatches::default() }
}
}
impl SsrPattern {
pub(crate) fn tree_for_kind(&self, kind: SyntaxKind) -> Result<&SyntaxNode, MatchFailed> {
let (tree, kind_name) = if ast::Expr::can_cast(kind) {
(&self.expr, "expression")
} else if ast::TypeRef::can_cast(kind) {
(&self.type_ref, "type reference")
} else if ast::ModuleItem::can_cast(kind) {
(&self.item, "item")
} else if ast::Path::can_cast(kind) {
(&self.path, "path")
} else if ast::Pat::can_cast(kind) {
(&self.pattern, "pattern")
} else {
fail_match!("Matching nodes of kind {:?} is not supported", kind);
};
match tree {
Some(tree) => Ok(tree),
None => fail_match!("Pattern cannot be parsed as a {}", kind_name),
}
}
}
// If `node` contains nothing but an ident then return it, otherwise return None.
fn only_ident(element: SyntaxElement) -> Option<SyntaxToken> {
match element {
SyntaxElement::Token(t) => {
if t.kind() == SyntaxKind::IDENT {
return Some(t);
}
}
SyntaxElement::Node(n) => {
let mut children = n.children_with_tokens();
if let (Some(only_child), None) = (children.next(), children.next()) {
return only_ident(only_child);
}
}
}
None
}
struct PatternIterator {
iter: SyntaxElementChildren,
}
impl Iterator for PatternIterator {
type Item = SyntaxElement;
fn next(&mut self) -> Option<SyntaxElement> {
while let Some(element) = self.iter.next() {
if !element.kind().is_trivia() {
return Some(element);
}
}
None
}
}
impl PatternIterator {
fn new(parent: &SyntaxNode) -> Self {
Self { iter: parent.children_with_tokens() }
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::MatchFinder;
#[test]
fn parse_match_replace() {
let rule: SsrRule = "foo($x) ==>> bar($x)".parse().unwrap();
let input = "fn main() { foo(1+2); }";
use ra_db::fixture::WithFixture;
let (db, file_id) = ra_ide_db::RootDatabase::with_single_file(input);
let mut match_finder = MatchFinder::new(&db);
match_finder.add_rule(rule);
let matches = match_finder.find_matches_in_file(file_id);
assert_eq!(matches.matches.len(), 1);
assert_eq!(matches.matches[0].matched_node.text(), "foo(1+2)");
assert_eq!(matches.matches[0].placeholder_values.len(), 1);
assert_eq!(
matches.matches[0].placeholder_values[&Var("x".to_string())]
.node
.as_ref()
.unwrap()
.text(),
"1+2"
);
let edit = crate::replacing::matches_to_edit(&matches, input);
let mut after = input.to_string();
edit.apply(&mut after);
assert_eq!(after, "fn main() { bar(1+2); }");
}
}
|