aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_syntax/src/algo.rs
blob: 7cfea70f9791d1a528b06af03fcd3ede4d23aea6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
//! FIXME: write short doc here

use std::ops::RangeInclusive;

use itertools::Itertools;
use ra_text_edit::TextEditBuilder;
use rustc_hash::FxHashMap;

use crate::{
    AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxNode, SyntaxNodePtr, TextRange, TextUnit,
};

/// Returns ancestors of the node at the offset, sorted by length. This should
/// do the right thing at an edge, e.g. when searching for expressions at `{
/// <|>foo }` we will get the name reference instead of the whole block, which
/// we would get if we just did `find_token_at_offset(...).flat_map(|t|
/// t.parent().ancestors())`.
pub fn ancestors_at_offset(
    node: &SyntaxNode,
    offset: TextUnit,
) -> impl Iterator<Item = SyntaxNode> {
    node.token_at_offset(offset)
        .map(|token| token.parent().ancestors())
        .kmerge_by(|node1, node2| node1.text_range().len() < node2.text_range().len())
}

/// Finds a node of specific Ast type at offset. Note that this is slightly
/// imprecise: if the cursor is strictly between two nodes of the desired type,
/// as in
///
/// ```no-run
/// struct Foo {}|struct Bar;
/// ```
///
/// then the shorter node will be silently preferred.
pub fn find_node_at_offset<N: AstNode>(syntax: &SyntaxNode, offset: TextUnit) -> Option<N> {
    ancestors_at_offset(syntax, offset).find_map(N::cast)
}

/// Finds the first sibling in the given direction which is not `trivia`
pub fn non_trivia_sibling(element: SyntaxElement, direction: Direction) -> Option<SyntaxElement> {
    return match element {
        NodeOrToken::Node(node) => node.siblings_with_tokens(direction).skip(1).find(not_trivia),
        NodeOrToken::Token(token) => token.siblings_with_tokens(direction).skip(1).find(not_trivia),
    };

    fn not_trivia(element: &SyntaxElement) -> bool {
        match element {
            NodeOrToken::Node(_) => true,
            NodeOrToken::Token(token) => !token.kind().is_trivia(),
        }
    }
}

pub fn find_covering_element(root: &SyntaxNode, range: TextRange) -> SyntaxElement {
    root.covering_element(range)
}

#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum InsertPosition<T> {
    First,
    Last,
    Before(T),
    After(T),
}

pub struct TreeDiff {
    replacements: FxHashMap<SyntaxElement, SyntaxElement>,
}

impl TreeDiff {
    pub fn into_text_edit(&self, builder: &mut TextEditBuilder) {
        for (from, to) in self.replacements.iter() {
            builder.replace(from.text_range(), to.to_string())
        }
    }
}

/// Finds minimal the diff, which, applied to `from`, will result in `to`.
///
/// Specifically, returns a map whose keys are descendants of `from` and values
/// are descendants of `to`, such that  `replace_descendants(from, map) == to`.
///
/// A trivial solution is a singletom map `{ from: to }`, but this function
/// tries to find a more fine-grained diff.
pub fn diff(from: &SyntaxNode, to: &SyntaxNode) -> TreeDiff {
    let mut buf = FxHashMap::default();
    // FIXME: this is both horrible inefficient and gives larger than
    // necessary diff. I bet there's a cool algorithm to diff trees properly.
    go(&mut buf, from.clone().into(), to.clone().into());
    return TreeDiff { replacements: buf };

    fn go(
        buf: &mut FxHashMap<SyntaxElement, SyntaxElement>,
        lhs: SyntaxElement,
        rhs: SyntaxElement,
    ) {
        if lhs.kind() == rhs.kind() && lhs.text_range().len() == rhs.text_range().len() {
            if match (&lhs, &rhs) {
                (NodeOrToken::Node(lhs), NodeOrToken::Node(rhs)) => {
                    lhs.green() == rhs.green() || lhs.text() == rhs.text()
                }
                (NodeOrToken::Token(lhs), NodeOrToken::Token(rhs)) => lhs.text() == rhs.text(),
                _ => false,
            } {
                return;
            }
        }
        if let (Some(lhs), Some(rhs)) = (lhs.as_node(), rhs.as_node()) {
            if lhs.children_with_tokens().count() == rhs.children_with_tokens().count() {
                for (lhs, rhs) in lhs.children_with_tokens().zip(rhs.children_with_tokens()) {
                    go(buf, lhs, rhs)
                }
                return;
            }
        }
        buf.insert(lhs, rhs);
    }
}

/// Adds specified children (tokens or nodes) to the current node at the
/// specific position.
///
/// This is a type-unsafe low-level editing API, if you need to use it,
/// prefer to create a type-safe abstraction on top of it instead.
pub fn insert_children(
    parent: &SyntaxNode,
    position: InsertPosition<SyntaxElement>,
    to_insert: &mut dyn Iterator<Item = SyntaxElement>,
) -> SyntaxNode {
    let mut delta = TextUnit::default();
    let to_insert = to_insert.map(|element| {
        delta += element.text_range().len();
        to_green_element(element)
    });

    let old_children = parent.green().children();

    let new_children = match &position {
        InsertPosition::First => {
            to_insert.chain(old_children.iter().cloned()).collect::<Box<[_]>>()
        }
        InsertPosition::Last => old_children.iter().cloned().chain(to_insert).collect::<Box<[_]>>(),
        InsertPosition::Before(anchor) | InsertPosition::After(anchor) => {
            let take_anchor = if let InsertPosition::After(_) = position { 1 } else { 0 };
            let split_at = position_of_child(parent, anchor.clone()) + take_anchor;
            let (before, after) = old_children.split_at(split_at);
            before
                .iter()
                .cloned()
                .chain(to_insert)
                .chain(after.iter().cloned())
                .collect::<Box<[_]>>()
        }
    };

    with_children(parent, new_children)
}

/// Replaces all nodes in `to_delete` with nodes from `to_insert`
///
/// This is a type-unsafe low-level editing API, if you need to use it,
/// prefer to create a type-safe abstraction on top of it instead.
pub fn replace_children(
    parent: &SyntaxNode,
    to_delete: RangeInclusive<SyntaxElement>,
    to_insert: &mut dyn Iterator<Item = SyntaxElement>,
) -> SyntaxNode {
    let start = position_of_child(parent, to_delete.start().clone());
    let end = position_of_child(parent, to_delete.end().clone());
    let old_children = parent.green().children();

    let new_children = old_children[..start]
        .iter()
        .cloned()
        .chain(to_insert.map(to_green_element))
        .chain(old_children[end + 1..].iter().cloned())
        .collect::<Box<[_]>>();
    with_children(parent, new_children)
}

/// Replaces descendants in the node, according to the mapping.
///
/// This is a type-unsafe low-level editing API, if you need to use it, prefer
/// to create a type-safe abstraction on top of it instead.
pub fn replace_descendants(
    parent: &SyntaxNode,
    map: &FxHashMap<SyntaxElement, SyntaxElement>,
) -> SyntaxNode {
    //  FIXME: this could be made much faster.
    let new_children = parent.children_with_tokens().map(|it| go(map, it)).collect::<Box<[_]>>();
    return with_children(parent, new_children);

    fn go(
        map: &FxHashMap<SyntaxElement, SyntaxElement>,
        element: SyntaxElement,
    ) -> NodeOrToken<rowan::GreenNode, rowan::GreenToken> {
        if let Some(replacement) = map.get(&element) {
            return match replacement {
                NodeOrToken::Node(it) => NodeOrToken::Node(it.green().clone()),
                NodeOrToken::Token(it) => NodeOrToken::Token(it.green().clone()),
            };
        }
        match element {
            NodeOrToken::Token(it) => NodeOrToken::Token(it.green().clone()),
            NodeOrToken::Node(it) => {
                NodeOrToken::Node(replace_descendants(&it, map).green().clone())
            }
        }
    }
}

fn with_children(
    parent: &SyntaxNode,
    new_children: Box<[NodeOrToken<rowan::GreenNode, rowan::GreenToken>]>,
) -> SyntaxNode {
    let len = new_children.iter().map(|it| it.text_len()).sum::<TextUnit>();
    let new_node =
        rowan::GreenNode::new(rowan::cursor::SyntaxKind(parent.kind() as u16), new_children);
    let new_root_node = parent.replace_with(new_node);
    let new_root_node = SyntaxNode::new_root(new_root_node);

    // FIXME: use a more elegant way to re-fetch the node (#1185), make
    // `range` private afterwards
    let mut ptr = SyntaxNodePtr::new(parent);
    ptr.range = TextRange::offset_len(ptr.range().start(), len);
    ptr.to_node(&new_root_node)
}

fn position_of_child(parent: &SyntaxNode, child: SyntaxElement) -> usize {
    parent
        .children_with_tokens()
        .position(|it| it == child)
        .expect("element is not a child of current element")
}

fn to_green_element(element: SyntaxElement) -> NodeOrToken<rowan::GreenNode, rowan::GreenToken> {
    match element {
        NodeOrToken::Node(it) => it.green().clone().into(),
        NodeOrToken::Token(it) => it.green().clone().into(),
    }
}