1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
//! Various extension methods to ast Expr Nodes, which are hard to code-generate.
use crate::{
SyntaxToken, SyntaxElement, SmolStr,
ast::{self, AstNode, AstChildren, children, child_opt},
SyntaxKind::*,
T
};
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ElseBranch<'a> {
Block(&'a ast::Block),
IfExpr(&'a ast::IfExpr),
}
impl ast::IfExpr {
pub fn then_branch(&self) -> Option<&ast::Block> {
self.blocks().nth(0)
}
pub fn else_branch(&self) -> Option<ElseBranch> {
let res = match self.blocks().nth(1) {
Some(block) => ElseBranch::Block(block),
None => {
let elif: &ast::IfExpr = child_opt(self)?;
ElseBranch::IfExpr(elif)
}
};
Some(res)
}
fn blocks(&self) -> AstChildren<ast::Block> {
children(self)
}
}
impl ast::RefExpr {
pub fn is_mut(&self) -> bool {
self.syntax().children_with_tokens().any(|n| n.kind() == T![mut])
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum PrefixOp {
/// The `*` operator for dereferencing
Deref,
/// The `!` operator for logical inversion
Not,
/// The `-` operator for negation
Neg,
}
impl ast::PrefixExpr {
pub fn op_kind(&self) -> Option<PrefixOp> {
match self.op_token()?.kind() {
T![*] => Some(PrefixOp::Deref),
T![!] => Some(PrefixOp::Not),
T![-] => Some(PrefixOp::Neg),
_ => None,
}
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.syntax().first_child_or_token()?.as_token()
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum BinOp {
/// The `||` operator for boolean OR
BooleanOr,
/// The `&&` operator for boolean AND
BooleanAnd,
/// The `==` operator for equality testing
EqualityTest,
/// The `!=` operator for equality testing
NegatedEqualityTest,
/// The `<=` operator for lesser-equal testing
LesserEqualTest,
/// The `>=` operator for greater-equal testing
GreaterEqualTest,
/// The `<` operator for comparison
LesserTest,
/// The `>` operator for comparison
GreaterTest,
/// The `+` operator for addition
Addition,
/// The `*` operator for multiplication
Multiplication,
/// The `-` operator for subtraction
Subtraction,
/// The `/` operator for division
Division,
/// The `%` operator for remainder after division
Remainder,
/// The `<<` operator for left shift
LeftShift,
/// The `>>` operator for right shift
RightShift,
/// The `^` operator for bitwise XOR
BitwiseXor,
/// The `|` operator for bitwise OR
BitwiseOr,
/// The `&` operator for bitwise AND
BitwiseAnd,
/// The `..` operator for right-open ranges
RangeRightOpen,
/// The `..=` operator for right-closed ranges
RangeRightClosed,
/// The `=` operator for assignment
Assignment,
/// The `+=` operator for assignment after addition
AddAssign,
/// The `/=` operator for assignment after division
DivAssign,
/// The `*=` operator for assignment after multiplication
MulAssign,
/// The `%=` operator for assignment after remainders
RemAssign,
/// The `>>=` operator for assignment after shifting right
ShrAssign,
/// The `<<=` operator for assignment after shifting left
ShlAssign,
/// The `-=` operator for assignment after subtraction
SubAssign,
/// The `|=` operator for assignment after bitwise OR
BitOrAssign,
/// The `&=` operator for assignment after bitwise AND
BitAndAssign,
/// The `^=` operator for assignment after bitwise XOR
BitXorAssign,
}
impl ast::BinExpr {
fn op_details(&self) -> Option<(SyntaxToken, BinOp)> {
self.syntax().children_with_tokens().filter_map(|it| it.as_token()).find_map(|c| {
match c.kind() {
T![||] => Some((c, BinOp::BooleanOr)),
T![&&] => Some((c, BinOp::BooleanAnd)),
T![==] => Some((c, BinOp::EqualityTest)),
T![!=] => Some((c, BinOp::NegatedEqualityTest)),
T![<=] => Some((c, BinOp::LesserEqualTest)),
T![>=] => Some((c, BinOp::GreaterEqualTest)),
T![<] => Some((c, BinOp::LesserTest)),
T![>] => Some((c, BinOp::GreaterTest)),
T![+] => Some((c, BinOp::Addition)),
T![*] => Some((c, BinOp::Multiplication)),
T![-] => Some((c, BinOp::Subtraction)),
T![/] => Some((c, BinOp::Division)),
T![%] => Some((c, BinOp::Remainder)),
T![<<] => Some((c, BinOp::LeftShift)),
T![>>] => Some((c, BinOp::RightShift)),
T![^] => Some((c, BinOp::BitwiseXor)),
T![|] => Some((c, BinOp::BitwiseOr)),
T![&] => Some((c, BinOp::BitwiseAnd)),
T![..] => Some((c, BinOp::RangeRightOpen)),
T![..=] => Some((c, BinOp::RangeRightClosed)),
T![=] => Some((c, BinOp::Assignment)),
T![+=] => Some((c, BinOp::AddAssign)),
T![/=] => Some((c, BinOp::DivAssign)),
T![*=] => Some((c, BinOp::MulAssign)),
T![%=] => Some((c, BinOp::RemAssign)),
T![>>=] => Some((c, BinOp::ShrAssign)),
T![<<=] => Some((c, BinOp::ShlAssign)),
T![-=] => Some((c, BinOp::SubAssign)),
T![|=] => Some((c, BinOp::BitOrAssign)),
T![&=] => Some((c, BinOp::BitAndAssign)),
T![^=] => Some((c, BinOp::BitXorAssign)),
_ => None,
}
})
}
pub fn op_kind(&self) -> Option<BinOp> {
self.op_details().map(|t| t.1)
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.op_details().map(|t| t.0)
}
pub fn lhs(&self) -> Option<&ast::Expr> {
children(self).nth(0)
}
pub fn rhs(&self) -> Option<&ast::Expr> {
children(self).nth(1)
}
pub fn sub_exprs(&self) -> (Option<&ast::Expr>, Option<&ast::Expr>) {
let mut children = children(self);
let first = children.next();
let second = children.next();
(first, second)
}
}
pub enum ArrayExprKind<'a> {
Repeat { initializer: Option<&'a ast::Expr>, repeat: Option<&'a ast::Expr> },
ElementList(AstChildren<'a, ast::Expr>),
}
impl ast::ArrayExpr {
pub fn kind(&self) -> ArrayExprKind {
if self.is_repeat() {
ArrayExprKind::Repeat {
initializer: children(self).nth(0),
repeat: children(self).nth(1),
}
} else {
ArrayExprKind::ElementList(children(self))
}
}
fn is_repeat(&self) -> bool {
self.syntax().children_with_tokens().any(|it| it.kind() == T![;])
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum LiteralKind {
String,
ByteString,
Char,
Byte,
IntNumber { suffix: Option<SmolStr> },
FloatNumber { suffix: Option<SmolStr> },
Bool,
}
impl ast::Literal {
pub fn token(&self) -> SyntaxToken {
match self.syntax().first_child_or_token().unwrap() {
SyntaxElement::Token(token) => token,
_ => unreachable!(),
}
}
pub fn kind(&self) -> LiteralKind {
match self.token().kind() {
INT_NUMBER => {
let allowed_suffix_list = [
"isize", "i128", "i64", "i32", "i16", "i8", "usize", "u128", "u64", "u32",
"u16", "u8",
];
let text = self.token().text().to_string();
let suffix = allowed_suffix_list
.iter()
.find(|&s| text.ends_with(s))
.map(|&suf| SmolStr::new(suf));
LiteralKind::IntNumber { suffix }
}
FLOAT_NUMBER => {
let allowed_suffix_list = ["f64", "f32"];
let text = self.token().text().to_string();
let suffix = allowed_suffix_list
.iter()
.find(|&s| text.ends_with(s))
.map(|&suf| SmolStr::new(suf));
LiteralKind::FloatNumber { suffix: suffix }
}
STRING | RAW_STRING => LiteralKind::String,
T![true] | T![false] => LiteralKind::Bool,
BYTE_STRING | RAW_BYTE_STRING => LiteralKind::ByteString,
CHAR => LiteralKind::Char,
BYTE => LiteralKind::Byte,
_ => unreachable!(),
}
}
}
impl ast::NamedField {
pub fn parent_struct_lit(&self) -> &ast::StructLit {
self.syntax().ancestors().find_map(ast::StructLit::cast).unwrap()
}
}
|