aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_syntax/src/parser_impl/event.rs
blob: 33e10ef85df14f0be4d9a0607c402901c18bf065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
//! This module provides a way to construct a `File`.
//! It is intended to be completely decoupled from the
//! parser, so as to allow to evolve the tree representation
//! and the parser algorithm independently.
//!
//! The `Sink` trait is the bridge between the parser and the
//! tree builder: the parser produces a stream of events like
//! `start node`, `finish node`, and `FileBuilder` converts
//! this stream to a real tree.
use crate::{
    lexer::Token,
    parser_impl::Sink,
    SmolStr,
    SyntaxKind::{self, *},
    TextRange, TextUnit,
    yellow::syntax_error::{
        ParseError,
        SyntaxError,
        SyntaxErrorKind,
    },
};
use std::mem;

/// `Parser` produces a flat list of `Event`s.
/// They are converted to a tree-structure in
/// a separate pass, via `TreeBuilder`.
#[derive(Debug)]
pub(crate) enum Event {
    /// This event signifies the start of the node.
    /// It should be either abandoned (in which case the
    /// `kind` is `TOMBSTONE`, and the event is ignored),
    /// or completed via a `Finish` event.
    ///
    /// All tokens between a `Start` and a `Finish` would
    /// become the children of the respective node.
    ///
    /// For left-recursive syntactic constructs, the parser produces
    /// a child node before it sees a parent. `forward_parent`
    /// saves the position of current event's parent.
    ///
    /// Consider this path
    ///
    /// foo::bar
    ///
    /// The events for it would look like this:
    ///
    ///
    /// START(PATH) IDENT('foo') FINISH START(PATH) COLONCOLON IDENT('bar') FINISH
    ///       |                          /\
    ///       |                          |
    ///       +------forward-parent------+
    ///
    /// And the tree would look like this
    ///
    ///    +--PATH---------+
    ///    |   |           |
    ///    |   |           |
    ///    |  '::'       'bar'
    ///    |
    ///   PATH
    ///    |
    ///   'foo'
    ///
    /// See also `CompletedMarker::precede`.
    Start {
        kind: SyntaxKind,
        forward_parent: Option<u32>,
    },

    /// Complete the previous `Start` event
    Finish,

    /// Produce a single leaf-element.
    /// `n_raw_tokens` is used to glue complex contextual tokens.
    /// For example, lexer tokenizes `>>` as `>`, `>`, and
    /// `n_raw_tokens = 2` is used to produced a single `>>`.
    Token {
        kind: SyntaxKind,
        n_raw_tokens: u8,
    },

    Error {
        msg: ParseError,
    },
}

impl Event {
    pub(crate) fn tombstone() -> Self {
        Event::Start {
            kind: TOMBSTONE,
            forward_parent: None,
        }
    }
}

pub(super) struct EventProcessor<'a, S: Sink> {
    sink: S,
    text_pos: TextUnit,
    text: &'a str,
    token_pos: usize,
    tokens: &'a [Token],
    events: &'a mut [Event],
}

impl<'a, S: Sink> EventProcessor<'a, S> {
    pub(super) fn new(
        sink: S,
        text: &'a str,
        tokens: &'a [Token],
        events: &'a mut [Event],
    ) -> EventProcessor<'a, S> {
        EventProcessor {
            sink,
            text_pos: 0.into(),
            text,
            token_pos: 0,
            tokens,
            events,
        }
    }

    /// Generate the syntax tree with the control of events.
    pub(super) fn process(mut self) -> S {
        let mut forward_parents = Vec::new();

        for i in 0..self.events.len() {
            match mem::replace(&mut self.events[i], Event::tombstone()) {
                Event::Start {
                    kind: TOMBSTONE, ..
                } => (),

                Event::Start {
                    kind,
                    forward_parent,
                } => {
                    // For events[A, B, C], B is A's forward_parent, C is B's forward_parent,
                    // in the normal control flow, the parent-child relation: `A -> B -> C`,
                    // while with the magic forward_parent, it writes: `C <- B <- A`.

                    // append `A` into parents.
                    forward_parents.push(kind);
                    let mut idx = i;
                    let mut fp = forward_parent;
                    while let Some(fwd) = fp {
                        idx += fwd as usize;
                        // append `A`'s forward_parent `B`
                        fp = match mem::replace(&mut self.events[idx], Event::tombstone()) {
                            Event::Start {
                                kind,
                                forward_parent,
                            } => {
                                forward_parents.push(kind);
                                forward_parent
                            }
                            _ => unreachable!(),
                        };
                        // append `B`'s forward_parent `C` in the next stage.
                    }

                    for kind in forward_parents.drain(..).rev() {
                        self.start(kind);
                    }
                }
                Event::Finish => {
                    let is_last = i == self.events.len() - 1;
                    self.finish(is_last);
                }
                Event::Token { kind, n_raw_tokens } => {
                    self.eat_trivias();
                    let n_raw_tokens = n_raw_tokens as usize;
                    let len = self.tokens[self.token_pos..self.token_pos + n_raw_tokens]
                        .iter()
                        .map(|it| it.len)
                        .sum::<TextUnit>();
                    self.leaf(kind, len, n_raw_tokens);
                }
                Event::Error { msg } => self.sink.error(SyntaxError::new(
                    SyntaxErrorKind::ParseError(msg),
                    self.text_pos,
                )),
            }
        }
        self.sink
    }

    /// Add the node into syntax tree but discard the comments/whitespaces.
    fn start(&mut self, kind: SyntaxKind) {
        if kind == SOURCE_FILE {
            self.sink.start_branch(kind);
            return;
        }
        let n_trivias = self.tokens[self.token_pos..]
            .iter()
            .take_while(|it| it.kind.is_trivia())
            .count();
        let leading_trivias = &self.tokens[self.token_pos..self.token_pos + n_trivias];
        let mut trivia_end =
            self.text_pos + leading_trivias.iter().map(|it| it.len).sum::<TextUnit>();

        let n_attached_trivias = {
            let leading_trivias = leading_trivias.iter().rev().map(|it| {
                let next_end = trivia_end - it.len;
                let range = TextRange::from_to(next_end, trivia_end);
                trivia_end = next_end;
                (it.kind, &self.text[range])
            });
            n_attached_trivias(kind, leading_trivias)
        };
        self.eat_n_trivias(n_trivias - n_attached_trivias);
        self.sink.start_branch(kind);
        self.eat_n_trivias(n_attached_trivias);
    }

    fn finish(&mut self, is_last: bool) {
        if is_last {
            self.eat_trivias()
        }
        self.sink.finish_branch();
    }

    fn eat_trivias(&mut self) {
        while let Some(&token) = self.tokens.get(self.token_pos) {
            if !token.kind.is_trivia() {
                break;
            }
            self.leaf(token.kind, token.len, 1);
        }
    }

    fn eat_n_trivias(&mut self, n: usize) {
        for _ in 0..n {
            let token = self.tokens[self.token_pos];
            assert!(token.kind.is_trivia());
            self.leaf(token.kind, token.len, 1);
        }
    }

    fn leaf(&mut self, kind: SyntaxKind, len: TextUnit, n_tokens: usize) {
        let range = TextRange::offset_len(self.text_pos, len);
        let text: SmolStr = self.text[range].into();
        self.text_pos += len;
        self.token_pos += n_tokens;
        self.sink.leaf(kind, text);
    }
}

fn n_attached_trivias<'a>(
    kind: SyntaxKind,
    trivias: impl Iterator<Item = (SyntaxKind, &'a str)>,
) -> usize {
    match kind {
        CONST_DEF | TYPE_DEF | STRUCT_DEF | ENUM_DEF | ENUM_VARIANT | FN_DEF | TRAIT_DEF
        | MODULE | NAMED_FIELD_DEF => {
            let mut res = 0;
            for (i, (kind, text)) in trivias.enumerate() {
                match kind {
                    WHITESPACE => {
                        if text.contains("\n\n") {
                            break;
                        }
                    }
                    COMMENT => {
                        res = i + 1;
                    }
                    _ => (),
                }
            }
            res
        }
        _ => 0,
    }
}