1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
//! Validation of byte literals
use crate::{
ast::{self, AstNode, AstToken},
string_lexing::{self, StringComponentKind},
TextRange,
validation::char,
yellow::{
SyntaxError,
SyntaxErrorKind::*,
},
};
pub(super) fn validate_byte_node(node: &ast::Byte, errors: &mut Vec<SyntaxError>) {
let literal_text = node.text();
let literal_range = node.syntax().range();
let mut components = string_lexing::parse_byte_literal(literal_text);
let mut len = 0;
for component in &mut components {
len += 1;
let text = &literal_text[component.range];
let range = component.range + literal_range.start();
validate_byte_component(text, component.kind, range, errors);
}
if !components.has_closing_quote {
errors.push(SyntaxError::new(UnclosedByte, literal_range));
}
if let Some(range) = components.suffix {
errors.push(SyntaxError::new(InvalidSuffix, range + literal_range.start()));
}
if len == 0 {
errors.push(SyntaxError::new(EmptyByte, literal_range));
}
if len > 1 {
errors.push(SyntaxError::new(OverlongByte, literal_range));
}
}
pub(super) fn validate_byte_component(
text: &str,
kind: StringComponentKind,
range: TextRange,
errors: &mut Vec<SyntaxError>,
) {
use self::StringComponentKind::*;
match kind {
AsciiEscape => validate_byte_escape(text, range, errors),
AsciiCodeEscape => validate_byte_code_escape(text, range, errors),
UnicodeEscape => errors.push(SyntaxError::new(UnicodeEscapeForbidden, range)),
CodePoint => {
let c = text.chars().next().expect("Code points should be one character long");
// These bytes must always be escaped
if c == '\t' || c == '\r' || c == '\n' {
errors.push(SyntaxError::new(UnescapedByte, range));
}
// Only ASCII bytes are allowed
if c > 0x7F as char {
errors.push(SyntaxError::new(ByteOutOfRange, range));
}
}
IgnoreNewline => { /* always valid */ }
}
}
fn validate_byte_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) {
if text.len() == 1 {
// Escape sequence consists only of leading `\`
errors.push(SyntaxError::new(EmptyByteEscape, range));
} else {
let escape_code = text.chars().skip(1).next().unwrap();
if !char::is_ascii_escape(escape_code) {
errors.push(SyntaxError::new(InvalidByteEscape, range));
}
}
}
fn validate_byte_code_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) {
// A ByteCodeEscape has 4 chars, example: `\xDD`
if !text.is_ascii() {
errors.push(SyntaxError::new(MalformedByteCodeEscape, range));
} else if text.chars().count() < 4 {
errors.push(SyntaxError::new(TooShortByteCodeEscape, range));
} else {
assert!(text.chars().count() == 4, "ByteCodeEscape cannot be longer than 4 chars");
if u8::from_str_radix(&text[2..], 16).is_err() {
errors.push(SyntaxError::new(MalformedByteCodeEscape, range));
}
}
}
#[cfg(test)]
mod test {
use crate::{SourceFile, TreeArc};
fn build_file(literal: &str) -> TreeArc<SourceFile> {
let src = format!("const C: u8 = b'{}';", literal);
SourceFile::parse(&src)
}
fn assert_valid_byte(literal: &str) {
let file = build_file(literal);
assert!(file.errors().len() == 0, "Errors for literal '{}': {:?}", literal, file.errors());
}
fn assert_invalid_byte(literal: &str) {
let file = build_file(literal);
assert!(file.errors().len() > 0);
}
#[test]
fn test_ansi_codepoints() {
for byte in 0..128 {
match byte {
b'\n' | b'\r' | b'\t' => assert_invalid_byte(&(byte as char).to_string()),
b'\'' | b'\\' => { /* Ignore character close and backslash */ }
_ => assert_valid_byte(&(byte as char).to_string()),
}
}
for byte in 128..=255u8 {
assert_invalid_byte(&(byte as char).to_string());
}
}
#[test]
fn test_unicode_codepoints() {
let invalid = ["Ƒ", "バ", "メ", "﷽"];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_unicode_multiple_codepoints() {
let invalid = ["नी", "👨👨"];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_valid_byte_escape() {
let valid = [r"\'", "\"", "\\\\", "\\\"", r"\n", r"\r", r"\t", r"\0"];
for c in &valid {
assert_valid_byte(c);
}
}
#[test]
fn test_invalid_byte_escape() {
let invalid = [r"\a", r"\?", r"\"];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_valid_byte_code_escape() {
let valid = [r"\x00", r"\x7F", r"\x55", r"\xF0"];
for c in &valid {
assert_valid_byte(c);
}
}
#[test]
fn test_invalid_byte_code_escape() {
let invalid = [r"\x", r"\x7"];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_invalid_unicode_escape() {
let well_formed = [r"\u{FF}", r"\u{0}", r"\u{F}", r"\u{10FFFF}", r"\u{1_0__FF___FF_____}"];
for c in &well_formed {
assert_invalid_byte(c);
}
let invalid = [
r"\u",
r"\u{}",
r"\u{",
r"\u{FF",
r"\u{FFFFFF}",
r"\u{_F}",
r"\u{00FFFFF}",
r"\u{110000}",
];
for c in &invalid {
assert_invalid_byte(c);
}
}
}
|