aboutsummaryrefslogtreecommitdiff
path: root/docs/dev/README.md
blob: cf93135ee9b8085376a28ea4b9f8af380c98a05e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Contributing Quick Start

Rust Analyzer is just a usual rust project, which is organized as a Cargo
workspace, builds on stable and doesn't depend on C libraries. So, just

```
$ cargo test
```

should be enough to get you started!

To learn more about how rust-analyzer works, see
[./architecture.md](./architecture.md) document.

We also publish rustdoc docs to pages:

https://rust-analyzer.github.io/rust-analyzer/ra_ide/

Various organizational and process issues are discussed in this document.

# Getting in Touch

Rust Analyzer is a part of [RLS-2.0 working
group](https://github.com/rust-lang/compiler-team/tree/6a769c13656c0a6959ebc09e7b1f7c09b86fb9c0/working-groups/rls-2.0).
Discussion happens in this Zulip stream:

https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Fwg-rls-2.2E0

# Issue Labels

* [good-first-issue](https://github.com/rust-analyzer/rust-analyzer/labels/good%20first%20issue)
  are good issues to get into the project.
* [E-has-instructions](https://github.com/rust-analyzer/rust-analyzer/issues?q=is%3Aopen+is%3Aissue+label%3AE-has-instructions)
  issues have links to the code in question and tests.
* [E-easy](https://github.com/rust-analyzer/rust-analyzer/issues?q=is%3Aopen+is%3Aissue+label%3AE-easy),
  [E-medium](https://github.com/rust-analyzer/rust-analyzer/issues?q=is%3Aopen+is%3Aissue+label%3AE-medium),
  [E-hard](https://github.com/rust-analyzer/rust-analyzer/issues?q=is%3Aopen+is%3Aissue+label%3AE-hard),
  labels are *estimates* for how hard would be to write a fix.
* [fun](https://github.com/rust-analyzer/rust-analyzer/issues?q=is%3Aopen+is%3Aissue+label%3Afun)
  is for cool, but probably hard stuff.

# CI

We use GitHub Actions for CI. Most of the things, including formatting, are checked by
`cargo test` so, if `cargo test` passes locally, that's a good sign that CI will
be green as well. The only exception is that some long-running tests are skipped locally by default.
Use `env RUN_SLOW_TESTS=1 cargo test` to run the full suite.

We use bors-ng to enforce the [not rocket science](https://graydon2.dreamwidth.org/1597.html) rule.

You can run `cargo xtask install-pre-commit-hook` to install git-hook to run rustfmt on commit.

# Code organization

All Rust code lives in the `crates` top-level directory, and is organized as a
single Cargo workspace. The `editors` top-level directory contains code for
integrating with editors. Currently, it contains the plugin for VS Code (in
TypeScript). The `docs` top-level directory contains both developer and user
documentation.

We have some automation infra in Rust in the `xtask` package. It contains
stuff like formatting checking, code generation and powers `cargo xtask install`.
The latter syntax is achieved with the help of cargo aliases (see `.cargo`
directory).

# Launching rust-analyzer

Debugging language server can be tricky: LSP is rather chatty, so driving it
from the command line is not really feasible, driving it via VS Code requires
interacting with two processes.

For this reason, the best way to see how rust-analyzer works is to find a
relevant test and execute it (VS Code includes an action for running a single
test).

However, launching a VS Code instance with locally build language server is
possible. There's **"Run Extension (Debug Build)"** launch configuration for this.

In general, I use one of the following workflows for fixing bugs and
implementing features.

If the problem concerns only internal parts of rust-analyzer (i.e. I don't need
to touch `rust-analyzer` crate or TypeScript code), there is a unit-test for it.
So, I use **Rust Analyzer: Run** action in VS Code to run this single test, and
then just do printf-driven development/debugging. As a sanity check after I'm
done, I use `cargo xtask install --server` and **Reload Window** action in VS
Code to sanity check that the thing works as I expect.

If the problem concerns only the VS Code extension, I use **Run Installed Extension**
launch configuration from `launch.json`. Notably, this uses the usual
`rust-analyzer` binary from `PATH`. For this it is important to have the following
in `setting.json` file:
```json
{
    "rust-analyzer.serverPath": "rust-analyzer"
}
```
After I am done with the fix, I use `cargo
xtask install --client-code` to try the new extension for real.

If I need to fix something in the `rust-analyzer` crate, I feel sad because it's
on the boundary between the two processes, and working there is slow. I usually
just `cargo xtask install --server` and poke changes from my live environment.
Note that this uses `--release`, which is usually faster overall, because
loading stdlib into debug version of rust-analyzer takes a lot of time. To speed
things up, sometimes I open a temporary hello-world project which has
`"rust-analyzer.withSysroot": false` in `.code/settings.json`. This flag causes
rust-analyzer to skip loading the sysroot, which greatly reduces the amount of
things rust-analyzer needs to do, and makes printf's more useful. Note that you
should only use `eprint!` family of macros for debugging: stdout is used for LSP
communication, and `print!` would break it.

If I need to fix something simultaneously in the server and in the client, I
feel even more sad. I don't have a specific workflow for this case.

Additionally, I use `cargo run --release -p rust-analyzer -- analysis-stats
path/to/some/rust/crate` to run a batch analysis. This is primarily useful for
performance optimizations, or for bug minimization.

# Code Style & Review Process

Our approach to "clean code" is two fold:

* We generally don't block PRs on style changes.
* At the same time, all code in rust-analyzer is constantly refactored.

It is explicitly OK for reviewer to flag only some nits in the PR, and than send a follow up cleanup PR for things which are easier to explain by example, cc-ing the original author.
Sending small cleanup PRs (like rename a single local variable) is encouraged.

## Scale of Changes

Everyone knows that it's better to send small & focused pull requests.
The problem is, sometimes you *have* to, eg, rewrite the whole compiler, and that just doesn't fit into a set of isolated PRs.

The main thing too keep an eye on is the boundaries between various components.
There are three kinds of changes:

1. Internals of a single component are changed.
   Specifically, you don't change any `pub` items.
   A good example here would be an addition of a new assist.

2. API of a component is expanded.
   Specifically, you add a new `pub` function which wasn't there before.
   A good example here would be expansion of assist API, for example, to implement lazy assists or assists groups.

3. A new dependency between components is introduced.
   Specifically, you add a `pub use` reexport from another crate or you add a new line to `[dependencies]` section of `Cargo.toml`.
   A good example here would be adding reference search capability to the assists crates.

For the first group, the change is generally merged as long as:

* it works for the happy case,
* it has tests,
* it doesn't panic for unhappy case.

For the second group, the change would be subjected to quite a bit of scrutiny and iteration.
The new API needs to be right (or at least easy to change later).
The actual implementation doesn't matter that much.
It's very important to minimize the amount of changed lines of code for changes of the second kind.
Often, you start doing change of the first kind, only to realise that you need to elevate to a change of the second kind.
In this case, we'll probably ask you to split API changes into a separate PR.

Changes of the third group should be pretty rare, so we don't specify any specific process for them.
That said, adding an innocent-looking `pub use` is a very simple way to break encapsulation, keep an eye on it!

Note: if you enjoyed this abstract hand-waving about boundaries, you might appreciate
https://www.tedinski.com/2018/02/06/system-boundaries.html

## Order of Imports

We separate import groups with blank lines

```rust
mod x;
mod y;

use std::{ ... }

use crate_foo::{ ... }
use crate_bar::{ ... }

use crate::{}

use super::{} // but prefer `use crate::`
```

## Import Style

Items from `hir` and `ast` should be used qualified:

```rust
// Good
use ra_syntax::ast;

fn frobnicate(func: hir::Function, strukt: ast::StructDef) {}

// Not as good
use hir::Function;
use ra_syntax::ast::StructDef;

fn frobnicate(func: Function, strukt: StructDef) {}
```

Avoid local `use MyEnum::*` imports.

Prefer `use crate::foo::bar` to `use super::bar`.

## Order of Items

Optimize for the reader who sees the file for the first time, and wants to get the general idea about what's going on.
People read things from top to bottom, so place most important things first.

Specifically, if all items except one are private, always put the non-private item on top.

Put `struct`s and `enum`s first, functions and impls last.

Do

```rust
// Good
struct Foo {
  bars: Vec<Bar>
}

struct Bar;
```

rather than

```rust
// Not as good
struct Bar;

struct Foo {
  bars: Vec<Bar>
}
```

## Documentation

For `.md` and `.adoc` files, prefer a sentence-per-line format, don't wrap lines.
If the line is too long, you want to split the sentence in two :-)

## Preconditions

Function preconditions should generally be expressed in types and provided by the caller (rather than checked by callee):

```rust
// Good
fn frbonicate(walrus: Walrus) {
  ...
}

// Not as good
fn frobnicate(walrus: Option<Walrus>) {
  let walrus = match walrus {
    Some(it) => it,
    None => return,
  };
  ...
}
```

## Commit Style

We don't have specific rules around git history hygiene.
Maintaining clean git history is encouraged, but not enforced.
We use rebase workflow, it's OK to rewrite history during PR review process.

Avoid @mentioning people in commit messages, as such messages create a lot of duplicate notification traffic during rebases.

# Architecture Invariants

This section tries to document high-level design constraints, which are not
always obvious from the low-level code.

## Incomplete syntax trees

Syntax trees are by design incomplete and do not enforce well-formedness.
If ast method returns an `Option`, it *can* be `None` at runtime, even if this is forbidden by the grammar.

## LSP independence

rust-analyzer is independent from LSP.
It provides features for a hypothetical perfect Rust-specific IDE client.
Internal representations are lowered to LSP in the `rust-analyzer` crate (the only crate which is allowed to use LSP types).

## IDE/Compiler split

There's a semi-hard split between "compiler" and "IDE", at the `ra_hir` crate.
Compiler derives new facts about source code.
It explicitly acknowledges that not all info is available (i.e. you can't look at types during name resolution).

IDE assumes that all information is available at all times.

IDE should use only types from `ra_hir`, and should not depend on the underling compiler types.
`ra_hir` is a facade.

## IDE API

The main IDE crate (`ra_ide`) uses "Plain Old Data" for the API.
Rather than talking in definitions and references, it talks in Strings and textual offsets.
In general, API is centered around UI concerns -- the result of the call is what the user sees in the editor, and not what the compiler sees underneath.
The results are 100% Rust specific though.

## Parser Tests

Test for parser (`ra_parser`) live in `ra_syntax` crate (see `test_data` direcotory).
There are two kinds of tests:

* Manually written test cases in `parser/ok` and `parser/error`
* "Inline" tests in `parser/inline` (these are generated) from comments in `ra_parser` crate.

The purpose of inline tests is not to achieve full coverage by test cases, but to explain to the reader of the code what each particular `if` and `match` is responsible for.
If you are tempted to add a large inline test, it might be a good idea to leave only the simplest example in place, and move the test to a manual `parser/ok` test.

# Logging

Logging is done by both rust-analyzer and VS Code, so it might be tricky to
figure out where logs go.

Inside rust-analyzer, we use the standard `log` crate for logging, and
`env_logger` for logging frontend. By default, log goes to stderr, but the
stderr itself is processed by VS Code.

To see stderr in the running VS Code instance, go to the "Output" tab of the
panel and select `rust-analyzer`. This shows `eprintln!` as well. Note that
`stdout` is used for the actual protocol, so `println!` will break things.

To log all communication between the server and the client, there are two choices:

* you can log on the server side, by running something like
  ```
  env RA_LOG=gen_lsp_server=trace code .
  ```

* you can log on the client side, by enabling `"rust-analyzer.trace.server":
  "verbose"` workspace setting. These logs are shown in a separate tab in the
  output and could be used with LSP inspector. Kudos to
  [@DJMcNab](https://github.com/DJMcNab) for setting this awesome infra up!


There's also two VS Code commands which might be of interest:

* `Rust Analyzer: Status` shows some memory-usage statistics. To take full
  advantage of it, you need to compile rust-analyzer with jemalloc support:
  ```
  $ cargo install --path crates/rust-analyzer --force --features jemalloc
  ```

  There's an alias for this: `cargo xtask install --server --jemalloc`.

* `Rust Analyzer: Syntax Tree` shows syntax tree of the current file/selection.

  You can hover over syntax nodes in the opened text file to see the appropriate
  rust code that it refers to and the rust editor will also highlight the proper
  text range.

  If you trigger Go to Definition in the inspected Rust source file,
  the syntax tree read-only editor should scroll to and select the
  appropriate syntax node token.

  ![demo](https://user-images.githubusercontent.com/36276403/78225773-6636a480-74d3-11ea-9d9f-1c9d42da03b0.png)

# Profiling

We have a built-in hierarchical profiler, you can enable it by using `RA_PROFILE` env-var:

```
RA_PROFILE=*             // dump everything
RA_PROFILE=foo|bar|baz   // enabled only selected entries
RA_PROFILE=*@3>10        // dump everything, up to depth 3, if it takes more than 10 ms
```

In particular, I have `export RA_PROFILE='*>10'` in my shell profile.

To measure time for from-scratch analysis, use something like this:

```
$ cargo run --release -p rust-analyzer -- analysis-stats ../chalk/
```

For measuring time of incremental analysis, use either of these:

```
$ cargo run --release -p rust-analyzer -- analysis-bench ../chalk/ --highlight ../chalk/chalk-engine/src/logic.rs
$ cargo run --release -p rust-analyzer -- analysis-bench ../chalk/ --complete ../chalk/chalk-engine/src/logic.rs:94:0
```