aboutsummaryrefslogtreecommitdiff
path: root/xtask/src/codegen/gen_syntax.rs
blob: 32afd47bc3245a24a957be89cc702557d682eb74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//! This module generates AST datatype used by rust-analyzer.
//!
//! Specifically, it generates the `SyntaxKind` enum and a number of newtype
//! wrappers around `SyntaxNode` which implement `ra_syntax::AstNode`.

use proc_macro2::{Punct, Spacing};
use quote::{format_ident, quote};

use crate::{
    ast_src::{AstSrc, FieldSrc, KindsSrc, AST_SRC, KINDS_SRC},
    codegen::{self, update, Mode},
    project_root, Result,
};

pub fn generate_syntax(mode: Mode) -> Result<()> {
    let syntax_kinds_file = project_root().join(codegen::SYNTAX_KINDS);
    let syntax_kinds = generate_syntax_kinds(KINDS_SRC)?;
    update(syntax_kinds_file.as_path(), &syntax_kinds, mode)?;

    let ast_file = project_root().join(codegen::AST);
    let ast = generate_ast(AST_SRC)?;
    update(ast_file.as_path(), &ast, mode)?;

    Ok(())
}

fn generate_ast(grammar: AstSrc<'_>) -> Result<String> {
    let nodes = grammar.nodes.iter().map(|node| {
        let name = format_ident!("{}", node.name);
        let kind = format_ident!("{}", to_upper_snake_case(&name.to_string()));
        let traits = node.traits.iter().map(|trait_name| {
            let trait_name = format_ident!("{}", trait_name);
            quote!(impl ast::#trait_name for #name {})
        });

        let methods = node.fields.iter().map(|(name, field)| {
            let method_name = match field {
                FieldSrc::Shorthand => format_ident!("{}", to_lower_snake_case(&name)),
                _ => format_ident!("{}", name),
            };
            let ty = match field {
                FieldSrc::Optional(ty) | FieldSrc::Many(ty) => ty,
                FieldSrc::Shorthand => name,
            };
            let ty = format_ident!("{}", ty);

            match field {
                FieldSrc::Many(_) => {
                    quote! {
                        pub fn #method_name(&self) -> AstChildren<#ty> {
                            AstChildren::new(&self.syntax)
                        }
                    }
                }
                FieldSrc::Optional(_) | FieldSrc::Shorthand => {
                    quote! {
                        pub fn #method_name(&self) -> Option<#ty> {
                            AstChildren::new(&self.syntax).next()
                        }
                    }
                }
            }
        });

        quote! {
            #[derive(Debug, Clone, PartialEq, Eq, Hash)]
            pub struct #name {
                pub(crate) syntax: SyntaxNode,
            }

            impl std::fmt::Display for #name {
                fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
                    std::fmt::Display::fmt(self.syntax(), f)
                }
            }

            impl AstNode for #name {
                fn can_cast(kind: SyntaxKind) -> bool {
                    match kind {
                        #kind => true,
                        _ => false,
                    }
                }
                fn cast(syntax: SyntaxNode) -> Option<Self> {
                    if Self::can_cast(syntax.kind()) { Some(Self { syntax }) } else { None }
                }
                fn syntax(&self) -> &SyntaxNode { &self.syntax }
            }
            #(#traits)*

            impl #name {
                #(#methods)*
            }
        }
    });

    let enums = grammar.enums.iter().map(|en| {
        let variants = en.variants.iter().map(|var| format_ident!("{}", var)).collect::<Vec<_>>();
        let name = format_ident!("{}", en.name);
        let kinds = variants
            .iter()
            .map(|name| format_ident!("{}", to_upper_snake_case(&name.to_string())))
            .collect::<Vec<_>>();
        let traits = en.traits.iter().map(|trait_name| {
            let trait_name = format_ident!("{}", trait_name);
            quote!(impl ast::#trait_name for #name {})
        });

        quote! {
            #[derive(Debug, Clone, PartialEq, Eq, Hash)]
            pub enum #name {
                #(#variants(#variants),)*
            }

            #(
            impl From<#variants> for #name {
                fn from(node: #variants) -> #name {
                    #name::#variants(node)
                }
            }
            )*

            impl std::fmt::Display for #name {
                fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
                    std::fmt::Display::fmt(self.syntax(), f)
                }
            }

            impl AstNode for #name {
                fn can_cast(kind: SyntaxKind) -> bool {
                    match kind {
                        #(#kinds)|* => true,
                        _ => false,
                    }
                }
                fn cast(syntax: SyntaxNode) -> Option<Self> {
                    let res = match syntax.kind() {
                        #(
                        #kinds => #name::#variants(#variants { syntax }),
                        )*
                        _ => return None,
                    };
                    Some(res)
                }
                fn syntax(&self) -> &SyntaxNode {
                    match self {
                        #(
                        #name::#variants(it) => &it.syntax,
                        )*
                    }
                }
            }
            #(#traits)*
        }
    });

    let ast = quote! {
        use crate::{
            SyntaxNode, SyntaxKind::{self, *},
            ast::{self, AstNode, AstChildren},
        };

        #(#nodes)*
        #(#enums)*
    };

    let pretty = crate::reformat(ast)?;
    Ok(pretty)
}

fn generate_syntax_kinds(grammar: KindsSrc<'_>) -> Result<String> {
    let (single_byte_tokens_values, single_byte_tokens): (Vec<_>, Vec<_>) = grammar
        .punct
        .iter()
        .filter(|(token, _name)| token.len() == 1)
        .map(|(token, name)| (token.chars().next().unwrap(), format_ident!("{}", name)))
        .unzip();

    let punctuation_values = grammar.punct.iter().map(|(token, _name)| {
        if "{}[]()".contains(token) {
            let c = token.chars().next().unwrap();
            quote! { #c }
        } else {
            let cs = token.chars().map(|c| Punct::new(c, Spacing::Joint));
            quote! { #(#cs)* }
        }
    });
    let punctuation =
        grammar.punct.iter().map(|(_token, name)| format_ident!("{}", name)).collect::<Vec<_>>();

    let full_keywords_values = &grammar.keywords;
    let full_keywords =
        full_keywords_values.iter().map(|kw| format_ident!("{}_KW", to_upper_snake_case(&kw)));

    let all_keywords_values =
        grammar.keywords.iter().chain(grammar.contextual_keywords.iter()).collect::<Vec<_>>();
    let all_keywords_idents = all_keywords_values.iter().map(|kw| format_ident!("{}", kw));
    let all_keywords = all_keywords_values
        .iter()
        .map(|name| format_ident!("{}_KW", to_upper_snake_case(&name)))
        .collect::<Vec<_>>();

    let literals =
        grammar.literals.iter().map(|name| format_ident!("{}", name)).collect::<Vec<_>>();

    let tokens = grammar.tokens.iter().map(|name| format_ident!("{}", name)).collect::<Vec<_>>();

    let nodes = grammar.nodes.iter().map(|name| format_ident!("{}", name)).collect::<Vec<_>>();

    let ast = quote! {
        #![allow(bad_style, missing_docs, unreachable_pub)]
        /// The kind of syntax node, e.g. `IDENT`, `USE_KW`, or `STRUCT_DEF`.
        #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
        #[repr(u16)]
        pub enum SyntaxKind {
            // Technical SyntaxKinds: they appear temporally during parsing,
            // but never end up in the final tree
            #[doc(hidden)]
            TOMBSTONE,
            #[doc(hidden)]
            EOF,
            #(#punctuation,)*
            #(#all_keywords,)*
            #(#literals,)*
            #(#tokens,)*
            #(#nodes,)*

            // Technical kind so that we can cast from u16 safely
            #[doc(hidden)]
            __LAST,
        }
        use self::SyntaxKind::*;

        impl SyntaxKind {
            pub fn is_keyword(self) -> bool {
                match self {
                    #(#all_keywords)|* => true,
                    _ => false,
                }
            }

            pub fn is_punct(self) -> bool {
                match self {
                    #(#punctuation)|* => true,
                    _ => false,
                }
            }

            pub fn is_literal(self) -> bool {
                match self {
                    #(#literals)|* => true,
                    _ => false,
                }
            }

            pub fn from_keyword(ident: &str) -> Option<SyntaxKind> {
                let kw = match ident {
                    #(#full_keywords_values => #full_keywords,)*
                    _ => return None,
                };
                Some(kw)
            }

            pub fn from_char(c: char) -> Option<SyntaxKind> {
                let tok = match c {
                    #(#single_byte_tokens_values => #single_byte_tokens,)*
                    _ => return None,
                };
                Some(tok)
            }
        }

        #[macro_export]
        macro_rules! T {
            #((#punctuation_values) => { $crate::SyntaxKind::#punctuation };)*
            #((#all_keywords_idents) => { $crate::SyntaxKind::#all_keywords };)*
        }
    };

    crate::reformat(ast)
}

fn to_upper_snake_case(s: &str) -> String {
    let mut buf = String::with_capacity(s.len());
    let mut prev_is_upper = None;
    for c in s.chars() {
        if c.is_ascii_uppercase() && prev_is_upper == Some(false) {
            buf.push('_')
        }
        prev_is_upper = Some(c.is_ascii_uppercase());

        buf.push(c.to_ascii_uppercase());
    }
    buf
}

fn to_lower_snake_case(s: &str) -> String {
    let mut buf = String::with_capacity(s.len());
    let mut prev_is_upper = None;
    for c in s.chars() {
        if c.is_ascii_uppercase() && prev_is_upper == Some(false) {
            buf.push('_')
        }
        prev_is_upper = Some(c.is_ascii_uppercase());

        buf.push(c.to_ascii_lowercase());
    }
    buf
}