aboutsummaryrefslogtreecommitdiff
path: root/crates/ra_hir/src/ty
diff options
context:
space:
mode:
authorAleksey Kladov <[email protected]>2019-11-27 14:46:02 +0000
committerAleksey Kladov <[email protected]>2019-11-27 18:16:00 +0000
commita87579500a2c35597071efd0ad6983927f0c1815 (patch)
tree9805b3dcbf8d767b2fc0623f42794068f3660d44 /crates/ra_hir/src/ty
parent368653081558ab389c6543d6b5027859e26beb3b (diff)
Move Ty
Diffstat (limited to 'crates/ra_hir/src/ty')
-rw-r--r--crates/ra_hir/src/ty/autoderef.rs108
-rw-r--r--crates/ra_hir/src/ty/display.rs93
-rw-r--r--crates/ra_hir/src/ty/infer.rs723
-rw-r--r--crates/ra_hir/src/ty/infer/coerce.rs357
-rw-r--r--crates/ra_hir/src/ty/infer/expr.rs689
-rw-r--r--crates/ra_hir/src/ty/infer/pat.rs189
-rw-r--r--crates/ra_hir/src/ty/infer/path.rs273
-rw-r--r--crates/ra_hir/src/ty/infer/unify.rs166
-rw-r--r--crates/ra_hir/src/ty/lower.rs755
-rw-r--r--crates/ra_hir/src/ty/method_resolution.rs362
-rw-r--r--crates/ra_hir/src/ty/op.rs50
-rw-r--r--crates/ra_hir/src/ty/primitive.rs3
-rw-r--r--crates/ra_hir/src/ty/tests.rs4896
-rw-r--r--crates/ra_hir/src/ty/tests/coercion.rs369
-rw-r--r--crates/ra_hir/src/ty/tests/never_type.rs246
-rw-r--r--crates/ra_hir/src/ty/traits.rs328
-rw-r--r--crates/ra_hir/src/ty/traits/chalk.rs906
-rw-r--r--crates/ra_hir/src/ty/utils.rs75
18 files changed, 0 insertions, 10588 deletions
diff --git a/crates/ra_hir/src/ty/autoderef.rs b/crates/ra_hir/src/ty/autoderef.rs
deleted file mode 100644
index ae68234ac..000000000
--- a/crates/ra_hir/src/ty/autoderef.rs
+++ /dev/null
@@ -1,108 +0,0 @@
1//! In certain situations, rust automatically inserts derefs as necessary: for
2//! example, field accesses `foo.bar` still work when `foo` is actually a
3//! reference to a type with the field `bar`. This is an approximation of the
4//! logic in rustc (which lives in librustc_typeck/check/autoderef.rs).
5
6use std::iter::successors;
7
8use hir_def::lang_item::LangItemTarget;
9use hir_expand::name;
10use log::{info, warn};
11use ra_db::CrateId;
12
13use crate::db::HirDatabase;
14
15use super::{
16 traits::{InEnvironment, Solution},
17 Canonical, Substs, Ty, TypeWalk,
18};
19
20const AUTODEREF_RECURSION_LIMIT: usize = 10;
21
22pub(crate) fn autoderef<'a>(
23 db: &'a impl HirDatabase,
24 krate: Option<CrateId>,
25 ty: InEnvironment<Canonical<Ty>>,
26) -> impl Iterator<Item = Canonical<Ty>> + 'a {
27 let InEnvironment { value: ty, environment } = ty;
28 successors(Some(ty), move |ty| {
29 deref(db, krate?, InEnvironment { value: ty, environment: environment.clone() })
30 })
31 .take(AUTODEREF_RECURSION_LIMIT)
32}
33
34pub(crate) fn deref(
35 db: &impl HirDatabase,
36 krate: CrateId,
37 ty: InEnvironment<&Canonical<Ty>>,
38) -> Option<Canonical<Ty>> {
39 if let Some(derefed) = ty.value.value.builtin_deref() {
40 Some(Canonical { value: derefed, num_vars: ty.value.num_vars })
41 } else {
42 deref_by_trait(db, krate, ty)
43 }
44}
45
46fn deref_by_trait(
47 db: &impl HirDatabase,
48 krate: CrateId,
49 ty: InEnvironment<&Canonical<Ty>>,
50) -> Option<Canonical<Ty>> {
51 let deref_trait = match db.lang_item(krate.into(), "deref".into())? {
52 LangItemTarget::TraitId(it) => it,
53 _ => return None,
54 };
55 let target = db.trait_data(deref_trait).associated_type_by_name(&name::TARGET_TYPE)?;
56
57 let generic_params = db.generic_params(target.into());
58 if generic_params.count_params_including_parent() != 1 {
59 // the Target type + Deref trait should only have one generic parameter,
60 // namely Deref's Self type
61 return None;
62 }
63
64 // FIXME make the Canonical handling nicer
65
66 let parameters = Substs::build_for_generics(&generic_params)
67 .push(ty.value.value.clone().shift_bound_vars(1))
68 .build();
69
70 let projection = super::traits::ProjectionPredicate {
71 ty: Ty::Bound(0),
72 projection_ty: super::ProjectionTy { associated_ty: target, parameters },
73 };
74
75 let obligation = super::Obligation::Projection(projection);
76
77 let in_env = InEnvironment { value: obligation, environment: ty.environment };
78
79 let canonical = super::Canonical { num_vars: 1 + ty.value.num_vars, value: in_env };
80
81 let solution = db.trait_solve(krate.into(), canonical)?;
82
83 match &solution {
84 Solution::Unique(vars) => {
85 // FIXME: vars may contain solutions for any inference variables
86 // that happened to be inside ty. To correctly handle these, we
87 // would have to pass the solution up to the inference context, but
88 // that requires a larger refactoring (especially if the deref
89 // happens during method resolution). So for the moment, we just
90 // check that we're not in the situation we're we would actually
91 // need to handle the values of the additional variables, i.e.
92 // they're just being 'passed through'. In the 'standard' case where
93 // we have `impl<T> Deref for Foo<T> { Target = T }`, that should be
94 // the case.
95 for i in 1..vars.0.num_vars {
96 if vars.0.value[i] != Ty::Bound((i - 1) as u32) {
97 warn!("complex solution for derefing {:?}: {:?}, ignoring", ty.value, solution);
98 return None;
99 }
100 }
101 Some(Canonical { value: vars.0.value[0].clone(), num_vars: vars.0.num_vars })
102 }
103 Solution::Ambig(_) => {
104 info!("Ambiguous solution for derefing {:?}: {:?}", ty.value, solution);
105 None
106 }
107 }
108}
diff --git a/crates/ra_hir/src/ty/display.rs b/crates/ra_hir/src/ty/display.rs
deleted file mode 100644
index 9bb3ece6c..000000000
--- a/crates/ra_hir/src/ty/display.rs
+++ /dev/null
@@ -1,93 +0,0 @@
1//! FIXME: write short doc here
2
3use std::fmt;
4
5use crate::db::HirDatabase;
6
7pub struct HirFormatter<'a, 'b, DB> {
8 pub db: &'a DB,
9 fmt: &'a mut fmt::Formatter<'b>,
10 buf: String,
11 curr_size: usize,
12 max_size: Option<usize>,
13}
14
15pub trait HirDisplay {
16 fn hir_fmt(&self, f: &mut HirFormatter<impl HirDatabase>) -> fmt::Result;
17
18 fn display<'a, DB>(&'a self, db: &'a DB) -> HirDisplayWrapper<'a, DB, Self>
19 where
20 Self: Sized,
21 {
22 HirDisplayWrapper(db, self, None)
23 }
24
25 fn display_truncated<'a, DB>(
26 &'a self,
27 db: &'a DB,
28 max_size: Option<usize>,
29 ) -> HirDisplayWrapper<'a, DB, Self>
30 where
31 Self: Sized,
32 {
33 HirDisplayWrapper(db, self, max_size)
34 }
35}
36
37impl<'a, 'b, DB> HirFormatter<'a, 'b, DB>
38where
39 DB: HirDatabase,
40{
41 pub fn write_joined<T: HirDisplay>(
42 &mut self,
43 iter: impl IntoIterator<Item = T>,
44 sep: &str,
45 ) -> fmt::Result {
46 let mut first = true;
47 for e in iter {
48 if !first {
49 write!(self, "{}", sep)?;
50 }
51 first = false;
52 e.hir_fmt(self)?;
53 }
54 Ok(())
55 }
56
57 /// This allows using the `write!` macro directly with a `HirFormatter`.
58 pub fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
59 // We write to a buffer first to track output size
60 self.buf.clear();
61 fmt::write(&mut self.buf, args)?;
62 self.curr_size += self.buf.len();
63
64 // Then we write to the internal formatter from the buffer
65 self.fmt.write_str(&self.buf)
66 }
67
68 pub fn should_truncate(&self) -> bool {
69 if let Some(max_size) = self.max_size {
70 self.curr_size >= max_size
71 } else {
72 false
73 }
74 }
75}
76
77pub struct HirDisplayWrapper<'a, DB, T>(&'a DB, &'a T, Option<usize>);
78
79impl<'a, DB, T> fmt::Display for HirDisplayWrapper<'a, DB, T>
80where
81 DB: HirDatabase,
82 T: HirDisplay,
83{
84 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
85 self.1.hir_fmt(&mut HirFormatter {
86 db: self.0,
87 fmt: f,
88 buf: String::with_capacity(20),
89 curr_size: 0,
90 max_size: self.2,
91 })
92 }
93}
diff --git a/crates/ra_hir/src/ty/infer.rs b/crates/ra_hir/src/ty/infer.rs
deleted file mode 100644
index 59e4e5f36..000000000
--- a/crates/ra_hir/src/ty/infer.rs
+++ /dev/null
@@ -1,723 +0,0 @@
1//! Type inference, i.e. the process of walking through the code and determining
2//! the type of each expression and pattern.
3//!
4//! For type inference, compare the implementations in rustc (the various
5//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
6//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
7//! inference here is the `infer` function, which infers the types of all
8//! expressions in a given function.
9//!
10//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
11//! which represent currently unknown types; as we walk through the expressions,
12//! we might determine that certain variables need to be equal to each other, or
13//! to certain types. To record this, we use the union-find implementation from
14//! the `ena` crate, which is extracted from rustc.
15
16use std::borrow::Cow;
17use std::mem;
18use std::ops::Index;
19use std::sync::Arc;
20
21use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
22use rustc_hash::FxHashMap;
23
24use hir_def::{
25 body::Body,
26 data::{ConstData, FunctionData},
27 expr::{BindingAnnotation, ExprId, PatId},
28 path::{known, Path},
29 resolver::{HasResolver, Resolver, TypeNs},
30 type_ref::{Mutability, TypeRef},
31 AdtId, AssocItemId, DefWithBodyId, FunctionId, StructFieldId, TypeAliasId, VariantId,
32};
33use hir_expand::{diagnostics::DiagnosticSink, name};
34use ra_arena::map::ArenaMap;
35use ra_prof::profile;
36use test_utils::tested_by;
37
38use super::{
39 primitive::{FloatTy, IntTy},
40 traits::{Guidance, Obligation, ProjectionPredicate, Solution},
41 ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor,
42 TypeWalk, Uncertain,
43};
44use crate::{db::HirDatabase, ty::infer::diagnostics::InferenceDiagnostic};
45
46macro_rules! ty_app {
47 ($ctor:pat, $param:pat) => {
48 crate::ty::Ty::Apply(crate::ty::ApplicationTy { ctor: $ctor, parameters: $param })
49 };
50 ($ctor:pat) => {
51 ty_app!($ctor, _)
52 };
53}
54
55mod unify;
56mod path;
57mod expr;
58mod pat;
59mod coerce;
60
61/// The entry point of type inference.
62pub fn infer_query(db: &impl HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
63 let _p = profile("infer_query");
64 let resolver = def.resolver(db);
65 let mut ctx = InferenceContext::new(db, def, resolver);
66
67 match def {
68 DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
69 DefWithBodyId::FunctionId(f) => ctx.collect_fn(&db.function_data(f)),
70 DefWithBodyId::StaticId(s) => ctx.collect_const(&db.static_data(s)),
71 }
72
73 ctx.infer_body();
74
75 Arc::new(ctx.resolve_all())
76}
77
78#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
79enum ExprOrPatId {
80 ExprId(ExprId),
81 PatId(PatId),
82}
83
84impl_froms!(ExprOrPatId: ExprId, PatId);
85
86/// Binding modes inferred for patterns.
87/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
88#[derive(Copy, Clone, Debug, Eq, PartialEq)]
89enum BindingMode {
90 Move,
91 Ref(Mutability),
92}
93
94impl BindingMode {
95 pub fn convert(annotation: BindingAnnotation) -> BindingMode {
96 match annotation {
97 BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
98 BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
99 BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
100 }
101 }
102}
103
104impl Default for BindingMode {
105 fn default() -> Self {
106 BindingMode::Move
107 }
108}
109
110/// A mismatch between an expected and an inferred type.
111#[derive(Clone, PartialEq, Eq, Debug, Hash)]
112pub struct TypeMismatch {
113 pub expected: Ty,
114 pub actual: Ty,
115}
116
117/// The result of type inference: A mapping from expressions and patterns to types.
118#[derive(Clone, PartialEq, Eq, Debug, Default)]
119pub struct InferenceResult {
120 /// For each method call expr, records the function it resolves to.
121 method_resolutions: FxHashMap<ExprId, FunctionId>,
122 /// For each field access expr, records the field it resolves to.
123 field_resolutions: FxHashMap<ExprId, StructFieldId>,
124 /// For each field in record literal, records the field it resolves to.
125 record_field_resolutions: FxHashMap<ExprId, StructFieldId>,
126 /// For each struct literal, records the variant it resolves to.
127 variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
128 /// For each associated item record what it resolves to
129 assoc_resolutions: FxHashMap<ExprOrPatId, AssocItemId>,
130 diagnostics: Vec<InferenceDiagnostic>,
131 pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
132 pub(super) type_of_pat: ArenaMap<PatId, Ty>,
133 pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
134}
135
136impl InferenceResult {
137 pub fn method_resolution(&self, expr: ExprId) -> Option<FunctionId> {
138 self.method_resolutions.get(&expr).copied()
139 }
140 pub fn field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
141 self.field_resolutions.get(&expr).copied()
142 }
143 pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
144 self.record_field_resolutions.get(&expr).copied()
145 }
146 pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
147 self.variant_resolutions.get(&id.into()).copied()
148 }
149 pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
150 self.variant_resolutions.get(&id.into()).copied()
151 }
152 pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItemId> {
153 self.assoc_resolutions.get(&id.into()).copied()
154 }
155 pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItemId> {
156 self.assoc_resolutions.get(&id.into()).copied()
157 }
158 pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
159 self.type_mismatches.get(expr)
160 }
161 pub(crate) fn add_diagnostics(
162 &self,
163 db: &impl HirDatabase,
164 owner: FunctionId,
165 sink: &mut DiagnosticSink,
166 ) {
167 self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
168 }
169}
170
171impl Index<ExprId> for InferenceResult {
172 type Output = Ty;
173
174 fn index(&self, expr: ExprId) -> &Ty {
175 self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
176 }
177}
178
179impl Index<PatId> for InferenceResult {
180 type Output = Ty;
181
182 fn index(&self, pat: PatId) -> &Ty {
183 self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
184 }
185}
186
187/// The inference context contains all information needed during type inference.
188#[derive(Clone, Debug)]
189struct InferenceContext<'a, D: HirDatabase> {
190 db: &'a D,
191 owner: DefWithBodyId,
192 body: Arc<Body>,
193 resolver: Resolver,
194 var_unification_table: InPlaceUnificationTable<TypeVarId>,
195 trait_env: Arc<TraitEnvironment>,
196 obligations: Vec<Obligation>,
197 result: InferenceResult,
198 /// The return type of the function being inferred.
199 return_ty: Ty,
200
201 /// Impls of `CoerceUnsized` used in coercion.
202 /// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
203 // FIXME: Use trait solver for this.
204 // Chalk seems unable to work well with builtin impl of `Unsize` now.
205 coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
206}
207
208impl<'a, D: HirDatabase> InferenceContext<'a, D> {
209 fn new(db: &'a D, owner: DefWithBodyId, resolver: Resolver) -> Self {
210 InferenceContext {
211 result: InferenceResult::default(),
212 var_unification_table: InPlaceUnificationTable::new(),
213 obligations: Vec::default(),
214 return_ty: Ty::Unknown, // set in collect_fn_signature
215 trait_env: TraitEnvironment::lower(db, &resolver),
216 coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
217 db,
218 owner,
219 body: db.body(owner.into()),
220 resolver,
221 }
222 }
223
224 fn resolve_all(mut self) -> InferenceResult {
225 // FIXME resolve obligations as well (use Guidance if necessary)
226 let mut result = mem::replace(&mut self.result, InferenceResult::default());
227 let mut tv_stack = Vec::new();
228 for ty in result.type_of_expr.values_mut() {
229 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
230 *ty = resolved;
231 }
232 for ty in result.type_of_pat.values_mut() {
233 let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
234 *ty = resolved;
235 }
236 result
237 }
238
239 fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
240 self.result.type_of_expr.insert(expr, ty);
241 }
242
243 fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId) {
244 self.result.method_resolutions.insert(expr, func);
245 }
246
247 fn write_field_resolution(&mut self, expr: ExprId, field: StructFieldId) {
248 self.result.field_resolutions.insert(expr, field);
249 }
250
251 fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
252 self.result.variant_resolutions.insert(id, variant);
253 }
254
255 fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) {
256 self.result.assoc_resolutions.insert(id, item.into());
257 }
258
259 fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
260 self.result.type_of_pat.insert(pat, ty);
261 }
262
263 fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
264 self.result.diagnostics.push(diagnostic);
265 }
266
267 fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
268 let ty = Ty::from_hir(
269 self.db,
270 // FIXME use right resolver for block
271 &self.resolver,
272 type_ref,
273 );
274 let ty = self.insert_type_vars(ty);
275 self.normalize_associated_types_in(ty)
276 }
277
278 fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
279 substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
280 }
281
282 fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
283 self.unify_inner(ty1, ty2, 0)
284 }
285
286 fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
287 if depth > 1000 {
288 // prevent stackoverflows
289 panic!("infinite recursion in unification");
290 }
291 if ty1 == ty2 {
292 return true;
293 }
294 // try to resolve type vars first
295 let ty1 = self.resolve_ty_shallow(ty1);
296 let ty2 = self.resolve_ty_shallow(ty2);
297 match (&*ty1, &*ty2) {
298 (Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
299 self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
300 }
301 _ => self.unify_inner_trivial(&ty1, &ty2),
302 }
303 }
304
305 fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
306 match (ty1, ty2) {
307 (Ty::Unknown, _) | (_, Ty::Unknown) => true,
308
309 (Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
310 | (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
311 | (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
312 | (
313 Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
314 Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
315 ) => {
316 // both type vars are unknown since we tried to resolve them
317 self.var_unification_table.union(*tv1, *tv2);
318 true
319 }
320
321 // The order of MaybeNeverTypeVar matters here.
322 // Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
323 // Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
324 (Ty::Infer(InferTy::TypeVar(tv)), other)
325 | (other, Ty::Infer(InferTy::TypeVar(tv)))
326 | (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
327 | (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
328 | (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
329 | (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
330 | (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
331 | (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
332 // the type var is unknown since we tried to resolve it
333 self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
334 true
335 }
336
337 _ => false,
338 }
339 }
340
341 fn new_type_var(&mut self) -> Ty {
342 Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
343 }
344
345 fn new_integer_var(&mut self) -> Ty {
346 Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
347 }
348
349 fn new_float_var(&mut self) -> Ty {
350 Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
351 }
352
353 fn new_maybe_never_type_var(&mut self) -> Ty {
354 Ty::Infer(InferTy::MaybeNeverTypeVar(
355 self.var_unification_table.new_key(TypeVarValue::Unknown),
356 ))
357 }
358
359 /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
360 fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
361 match ty {
362 Ty::Unknown => self.new_type_var(),
363 Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
364 self.new_integer_var()
365 }
366 Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
367 self.new_float_var()
368 }
369 _ => ty,
370 }
371 }
372
373 fn insert_type_vars(&mut self, ty: Ty) -> Ty {
374 ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
375 }
376
377 fn resolve_obligations_as_possible(&mut self) {
378 let obligations = mem::replace(&mut self.obligations, Vec::new());
379 for obligation in obligations {
380 let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
381 let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
382 let solution = self
383 .db
384 .trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone());
385
386 match solution {
387 Some(Solution::Unique(substs)) => {
388 canonicalized.apply_solution(self, substs.0);
389 }
390 Some(Solution::Ambig(Guidance::Definite(substs))) => {
391 canonicalized.apply_solution(self, substs.0);
392 self.obligations.push(obligation);
393 }
394 Some(_) => {
395 // FIXME use this when trying to resolve everything at the end
396 self.obligations.push(obligation);
397 }
398 None => {
399 // FIXME obligation cannot be fulfilled => diagnostic
400 }
401 };
402 }
403 }
404
405 /// Resolves the type as far as currently possible, replacing type variables
406 /// by their known types. All types returned by the infer_* functions should
407 /// be resolved as far as possible, i.e. contain no type variables with
408 /// known type.
409 fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
410 self.resolve_obligations_as_possible();
411
412 ty.fold(&mut |ty| match ty {
413 Ty::Infer(tv) => {
414 let inner = tv.to_inner();
415 if tv_stack.contains(&inner) {
416 tested_by!(type_var_cycles_resolve_as_possible);
417 // recursive type
418 return tv.fallback_value();
419 }
420 if let Some(known_ty) =
421 self.var_unification_table.inlined_probe_value(inner).known()
422 {
423 // known_ty may contain other variables that are known by now
424 tv_stack.push(inner);
425 let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
426 tv_stack.pop();
427 result
428 } else {
429 ty
430 }
431 }
432 _ => ty,
433 })
434 }
435
436 /// If `ty` is a type variable with known type, returns that type;
437 /// otherwise, return ty.
438 fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
439 let mut ty = Cow::Borrowed(ty);
440 // The type variable could resolve to a int/float variable. Hence try
441 // resolving up to three times; each type of variable shouldn't occur
442 // more than once
443 for i in 0..3 {
444 if i > 0 {
445 tested_by!(type_var_resolves_to_int_var);
446 }
447 match &*ty {
448 Ty::Infer(tv) => {
449 let inner = tv.to_inner();
450 match self.var_unification_table.inlined_probe_value(inner).known() {
451 Some(known_ty) => {
452 // The known_ty can't be a type var itself
453 ty = Cow::Owned(known_ty.clone());
454 }
455 _ => return ty,
456 }
457 }
458 _ => return ty,
459 }
460 }
461 log::error!("Inference variable still not resolved: {:?}", ty);
462 ty
463 }
464
465 /// Recurses through the given type, normalizing associated types mentioned
466 /// in it by replacing them by type variables and registering obligations to
467 /// resolve later. This should be done once for every type we get from some
468 /// type annotation (e.g. from a let type annotation, field type or function
469 /// call). `make_ty` handles this already, but e.g. for field types we need
470 /// to do it as well.
471 fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
472 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
473 ty.fold(&mut |ty| match ty {
474 Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
475 _ => ty,
476 })
477 }
478
479 fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
480 let var = self.new_type_var();
481 let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
482 let obligation = Obligation::Projection(predicate);
483 self.obligations.push(obligation);
484 var
485 }
486
487 /// Resolves the type completely; type variables without known type are
488 /// replaced by Ty::Unknown.
489 fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
490 ty.fold(&mut |ty| match ty {
491 Ty::Infer(tv) => {
492 let inner = tv.to_inner();
493 if tv_stack.contains(&inner) {
494 tested_by!(type_var_cycles_resolve_completely);
495 // recursive type
496 return tv.fallback_value();
497 }
498 if let Some(known_ty) =
499 self.var_unification_table.inlined_probe_value(inner).known()
500 {
501 // known_ty may contain other variables that are known by now
502 tv_stack.push(inner);
503 let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
504 tv_stack.pop();
505 result
506 } else {
507 tv.fallback_value()
508 }
509 }
510 _ => ty,
511 })
512 }
513
514 fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantId>) {
515 let path = match path {
516 Some(path) => path,
517 None => return (Ty::Unknown, None),
518 };
519 let resolver = &self.resolver;
520 // FIXME: this should resolve assoc items as well, see this example:
521 // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
522 match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
523 Some(TypeNs::AdtId(AdtId::StructId(strukt))) => {
524 let substs = Ty::substs_from_path(self.db, resolver, path, strukt.into());
525 let ty = self.db.ty(strukt.into());
526 let ty = self.insert_type_vars(ty.apply_substs(substs));
527 (ty, Some(strukt.into()))
528 }
529 Some(TypeNs::EnumVariantId(var)) => {
530 let substs = Ty::substs_from_path(self.db, resolver, path, var.into());
531 let ty = self.db.ty(var.parent.into());
532 let ty = self.insert_type_vars(ty.apply_substs(substs));
533 (ty, Some(var.into()))
534 }
535 Some(_) | None => (Ty::Unknown, None),
536 }
537 }
538
539 fn collect_const(&mut self, data: &ConstData) {
540 self.return_ty = self.make_ty(&data.type_ref);
541 }
542
543 fn collect_fn(&mut self, data: &FunctionData) {
544 let body = Arc::clone(&self.body); // avoid borrow checker problem
545 for (type_ref, pat) in data.params.iter().zip(body.params.iter()) {
546 let ty = self.make_ty(type_ref);
547
548 self.infer_pat(*pat, &ty, BindingMode::default());
549 }
550 self.return_ty = self.make_ty(&data.ret_type);
551 }
552
553 fn infer_body(&mut self) {
554 self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
555 }
556
557 fn resolve_into_iter_item(&self) -> Option<TypeAliasId> {
558 let path = known::std_iter_into_iterator();
559 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
560 self.db.trait_data(trait_).associated_type_by_name(&name::ITEM_TYPE)
561 }
562
563 fn resolve_ops_try_ok(&self) -> Option<TypeAliasId> {
564 let path = known::std_ops_try();
565 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
566 self.db.trait_data(trait_).associated_type_by_name(&name::OK_TYPE)
567 }
568
569 fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
570 let path = known::std_future_future();
571 let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
572 self.db.trait_data(trait_).associated_type_by_name(&name::OUTPUT_TYPE)
573 }
574
575 fn resolve_boxed_box(&self) -> Option<AdtId> {
576 let path = known::std_boxed_box();
577 let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
578 Some(struct_.into())
579 }
580}
581
582/// The ID of a type variable.
583#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
584pub struct TypeVarId(pub(super) u32);
585
586impl UnifyKey for TypeVarId {
587 type Value = TypeVarValue;
588
589 fn index(&self) -> u32 {
590 self.0
591 }
592
593 fn from_index(i: u32) -> Self {
594 TypeVarId(i)
595 }
596
597 fn tag() -> &'static str {
598 "TypeVarId"
599 }
600}
601
602/// The value of a type variable: either we already know the type, or we don't
603/// know it yet.
604#[derive(Clone, PartialEq, Eq, Debug)]
605pub enum TypeVarValue {
606 Known(Ty),
607 Unknown,
608}
609
610impl TypeVarValue {
611 fn known(&self) -> Option<&Ty> {
612 match self {
613 TypeVarValue::Known(ty) => Some(ty),
614 TypeVarValue::Unknown => None,
615 }
616 }
617}
618
619impl UnifyValue for TypeVarValue {
620 type Error = NoError;
621
622 fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
623 match (value1, value2) {
624 // We should never equate two type variables, both of which have
625 // known types. Instead, we recursively equate those types.
626 (TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
627 "equating two type variables, both of which have known types: {:?} and {:?}",
628 t1, t2
629 ),
630
631 // If one side is known, prefer that one.
632 (TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
633 (TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
634
635 (TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
636 }
637 }
638}
639
640/// The kinds of placeholders we need during type inference. There's separate
641/// values for general types, and for integer and float variables. The latter
642/// two are used for inference of literal values (e.g. `100` could be one of
643/// several integer types).
644#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
645pub enum InferTy {
646 TypeVar(TypeVarId),
647 IntVar(TypeVarId),
648 FloatVar(TypeVarId),
649 MaybeNeverTypeVar(TypeVarId),
650}
651
652impl InferTy {
653 fn to_inner(self) -> TypeVarId {
654 match self {
655 InferTy::TypeVar(ty)
656 | InferTy::IntVar(ty)
657 | InferTy::FloatVar(ty)
658 | InferTy::MaybeNeverTypeVar(ty) => ty,
659 }
660 }
661
662 fn fallback_value(self) -> Ty {
663 match self {
664 InferTy::TypeVar(..) => Ty::Unknown,
665 InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
666 InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
667 InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
668 }
669 }
670}
671
672/// When inferring an expression, we propagate downward whatever type hint we
673/// are able in the form of an `Expectation`.
674#[derive(Clone, PartialEq, Eq, Debug)]
675struct Expectation {
676 ty: Ty,
677 // FIXME: In some cases, we need to be aware whether the expectation is that
678 // the type match exactly what we passed, or whether it just needs to be
679 // coercible to the expected type. See Expectation::rvalue_hint in rustc.
680}
681
682impl Expectation {
683 /// The expectation that the type of the expression needs to equal the given
684 /// type.
685 fn has_type(ty: Ty) -> Self {
686 Expectation { ty }
687 }
688
689 /// This expresses no expectation on the type.
690 fn none() -> Self {
691 Expectation { ty: Ty::Unknown }
692 }
693}
694
695mod diagnostics {
696 use hir_def::{expr::ExprId, FunctionId, HasSource, Lookup};
697 use hir_expand::diagnostics::DiagnosticSink;
698
699 use crate::{db::HirDatabase, diagnostics::NoSuchField};
700
701 #[derive(Debug, PartialEq, Eq, Clone)]
702 pub(super) enum InferenceDiagnostic {
703 NoSuchField { expr: ExprId, field: usize },
704 }
705
706 impl InferenceDiagnostic {
707 pub(super) fn add_to(
708 &self,
709 db: &impl HirDatabase,
710 owner: FunctionId,
711 sink: &mut DiagnosticSink,
712 ) {
713 match self {
714 InferenceDiagnostic::NoSuchField { expr, field } => {
715 let file = owner.lookup(db).source(db).file_id;
716 let (_, source_map) = db.body_with_source_map(owner.into());
717 let field = source_map.field_syntax(*expr, *field);
718 sink.push(NoSuchField { file, field })
719 }
720 }
721 }
722 }
723}
diff --git a/crates/ra_hir/src/ty/infer/coerce.rs b/crates/ra_hir/src/ty/infer/coerce.rs
deleted file mode 100644
index 3fb5d8a83..000000000
--- a/crates/ra_hir/src/ty/infer/coerce.rs
+++ /dev/null
@@ -1,357 +0,0 @@
1//! Coercion logic. Coercions are certain type conversions that can implicitly
2//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
3//! like going from `&Vec<T>` to `&[T]`.
4//!
5//! See: https://doc.rust-lang.org/nomicon/coercions.html
6
7use hir_def::{
8 lang_item::LangItemTarget,
9 resolver::{HasResolver, Resolver},
10 type_ref::Mutability,
11 AdtId,
12};
13use rustc_hash::FxHashMap;
14use test_utils::tested_by;
15
16use crate::{
17 db::HirDatabase,
18 ty::{autoderef, Substs, TraitRef, Ty, TypeCtor, TypeWalk},
19};
20
21use super::{InEnvironment, InferTy, InferenceContext, TypeVarValue};
22
23impl<'a, D: HirDatabase> InferenceContext<'a, D> {
24 /// Unify two types, but may coerce the first one to the second one
25 /// using "implicit coercion rules" if needed.
26 pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
27 let from_ty = self.resolve_ty_shallow(from_ty).into_owned();
28 let to_ty = self.resolve_ty_shallow(to_ty);
29 self.coerce_inner(from_ty, &to_ty)
30 }
31
32 /// Merge two types from different branches, with possible implicit coerce.
33 ///
34 /// Note that it is only possible that one type are coerced to another.
35 /// Coercing both types to another least upper bound type is not possible in rustc,
36 /// which will simply result in "incompatible types" error.
37 pub(super) fn coerce_merge_branch<'t>(&mut self, ty1: &Ty, ty2: &Ty) -> Ty {
38 if self.coerce(ty1, ty2) {
39 ty2.clone()
40 } else if self.coerce(ty2, ty1) {
41 ty1.clone()
42 } else {
43 tested_by!(coerce_merge_fail_fallback);
44 // For incompatible types, we use the latter one as result
45 // to be better recovery for `if` without `else`.
46 ty2.clone()
47 }
48 }
49
50 pub(super) fn init_coerce_unsized_map(
51 db: &'a D,
52 resolver: &Resolver,
53 ) -> FxHashMap<(TypeCtor, TypeCtor), usize> {
54 let krate = resolver.krate().unwrap();
55 let impls = match db.lang_item(krate.into(), "coerce_unsized".into()) {
56 Some(LangItemTarget::TraitId(trait_)) => {
57 db.impls_for_trait(krate.into(), trait_.into())
58 }
59 _ => return FxHashMap::default(),
60 };
61
62 impls
63 .iter()
64 .filter_map(|&impl_id| {
65 let impl_data = db.impl_data(impl_id);
66 let resolver = impl_id.resolver(db);
67 let target_ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
68
69 // `CoerseUnsized` has one generic parameter for the target type.
70 let trait_ref = TraitRef::from_hir(
71 db,
72 &resolver,
73 impl_data.target_trait.as_ref()?,
74 Some(target_ty),
75 )?;
76 let cur_from_ty = trait_ref.substs.0.get(0)?;
77 let cur_to_ty = trait_ref.substs.0.get(1)?;
78
79 match (&cur_from_ty, cur_to_ty) {
80 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => {
81 // FIXME: We return the first non-equal bound as the type parameter to coerce to unsized type.
82 // This works for smart-pointer-like coercion, which covers all impls from std.
83 st1.iter().zip(st2.iter()).enumerate().find_map(|(i, (ty1, ty2))| {
84 match (ty1, ty2) {
85 (Ty::Param { idx: p1, .. }, Ty::Param { idx: p2, .. })
86 if p1 != p2 =>
87 {
88 Some(((*ctor1, *ctor2), i))
89 }
90 _ => None,
91 }
92 })
93 }
94 _ => None,
95 }
96 })
97 .collect()
98 }
99
100 fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool {
101 match (&from_ty, to_ty) {
102 // Never type will make type variable to fallback to Never Type instead of Unknown.
103 (ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => {
104 let var = self.new_maybe_never_type_var();
105 self.var_unification_table.union_value(*tv, TypeVarValue::Known(var));
106 return true;
107 }
108 (ty_app!(TypeCtor::Never), _) => return true,
109
110 // Trivial cases, this should go after `never` check to
111 // avoid infer result type to be never
112 _ => {
113 if self.unify_inner_trivial(&from_ty, &to_ty) {
114 return true;
115 }
116 }
117 }
118
119 // Pointer weakening and function to pointer
120 match (&mut from_ty, to_ty) {
121 // `*mut T`, `&mut T, `&T`` -> `*const T`
122 // `&mut T` -> `&T`
123 // `&mut T` -> `*mut T`
124 (ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
125 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
126 | (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared)))
127 | (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => {
128 *c1 = *c2;
129 }
130
131 // Illegal mutablity conversion
132 (
133 ty_app!(TypeCtor::RawPtr(Mutability::Shared)),
134 ty_app!(TypeCtor::RawPtr(Mutability::Mut)),
135 )
136 | (
137 ty_app!(TypeCtor::Ref(Mutability::Shared)),
138 ty_app!(TypeCtor::Ref(Mutability::Mut)),
139 ) => return false,
140
141 // `{function_type}` -> `fn()`
142 (ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => {
143 match from_ty.callable_sig(self.db) {
144 None => return false,
145 Some(sig) => {
146 let num_args = sig.params_and_return.len() as u16 - 1;
147 from_ty =
148 Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return));
149 }
150 }
151 }
152
153 _ => {}
154 }
155
156 if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) {
157 return ret;
158 }
159
160 // Auto Deref if cannot coerce
161 match (&from_ty, to_ty) {
162 // FIXME: DerefMut
163 (ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => {
164 self.unify_autoderef_behind_ref(&st1[0], &st2[0])
165 }
166
167 // Otherwise, normal unify
168 _ => self.unify(&from_ty, to_ty),
169 }
170 }
171
172 /// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
173 ///
174 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
175 fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
176 let (ctor1, st1, ctor2, st2) = match (from_ty, to_ty) {
177 (ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => (ctor1, st1, ctor2, st2),
178 _ => return None,
179 };
180
181 let coerce_generic_index = *self.coerce_unsized_map.get(&(*ctor1, *ctor2))?;
182
183 // Check `Unsize` first
184 match self.check_unsize_and_coerce(
185 st1.0.get(coerce_generic_index)?,
186 st2.0.get(coerce_generic_index)?,
187 0,
188 ) {
189 Some(true) => {}
190 ret => return ret,
191 }
192
193 let ret = st1
194 .iter()
195 .zip(st2.iter())
196 .enumerate()
197 .filter(|&(idx, _)| idx != coerce_generic_index)
198 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
199
200 Some(ret)
201 }
202
203 /// Check if `from_ty: Unsize<to_ty>`, and coerce to `to_ty` if it holds.
204 ///
205 /// It should not be directly called. It is only used by `try_coerce_unsized`.
206 ///
207 /// See: https://doc.rust-lang.org/nightly/std/marker/trait.Unsize.html
208 fn check_unsize_and_coerce(&mut self, from_ty: &Ty, to_ty: &Ty, depth: usize) -> Option<bool> {
209 if depth > 1000 {
210 panic!("Infinite recursion in coercion");
211 }
212
213 match (&from_ty, &to_ty) {
214 // `[T; N]` -> `[T]`
215 (ty_app!(TypeCtor::Array, st1), ty_app!(TypeCtor::Slice, st2)) => {
216 Some(self.unify(&st1[0], &st2[0]))
217 }
218
219 // `T` -> `dyn Trait` when `T: Trait`
220 (_, Ty::Dyn(_)) => {
221 // FIXME: Check predicates
222 Some(true)
223 }
224
225 // `(..., T)` -> `(..., U)` when `T: Unsize<U>`
226 (
227 ty_app!(TypeCtor::Tuple { cardinality: len1 }, st1),
228 ty_app!(TypeCtor::Tuple { cardinality: len2 }, st2),
229 ) => {
230 if len1 != len2 || *len1 == 0 {
231 return None;
232 }
233
234 match self.check_unsize_and_coerce(
235 st1.last().unwrap(),
236 st2.last().unwrap(),
237 depth + 1,
238 ) {
239 Some(true) => {}
240 ret => return ret,
241 }
242
243 let ret = st1[..st1.len() - 1]
244 .iter()
245 .zip(&st2[..st2.len() - 1])
246 .all(|(ty1, ty2)| self.unify(ty1, ty2));
247
248 Some(ret)
249 }
250
251 // Foo<..., T, ...> is Unsize<Foo<..., U, ...>> if:
252 // - T: Unsize<U>
253 // - Foo is a struct
254 // - Only the last field of Foo has a type involving T
255 // - T is not part of the type of any other fields
256 // - Bar<T>: Unsize<Bar<U>>, if the last field of Foo has type Bar<T>
257 (
258 ty_app!(TypeCtor::Adt(AdtId::StructId(struct1)), st1),
259 ty_app!(TypeCtor::Adt(AdtId::StructId(struct2)), st2),
260 ) if struct1 == struct2 => {
261 let field_tys = self.db.field_types((*struct1).into());
262 let struct_data = self.db.struct_data(*struct1);
263
264 let mut fields = struct_data.variant_data.fields().iter();
265 let (last_field_id, _data) = fields.next_back()?;
266
267 // Get the generic parameter involved in the last field.
268 let unsize_generic_index = {
269 let mut index = None;
270 let mut multiple_param = false;
271 field_tys[last_field_id].walk(&mut |ty| match ty {
272 &Ty::Param { idx, .. } => {
273 if index.is_none() {
274 index = Some(idx);
275 } else if Some(idx) != index {
276 multiple_param = true;
277 }
278 }
279 _ => {}
280 });
281
282 if multiple_param {
283 return None;
284 }
285 index?
286 };
287
288 // Check other fields do not involve it.
289 let mut multiple_used = false;
290 fields.for_each(|(field_id, _data)| {
291 field_tys[field_id].walk(&mut |ty| match ty {
292 &Ty::Param { idx, .. } if idx == unsize_generic_index => {
293 multiple_used = true
294 }
295 _ => {}
296 })
297 });
298 if multiple_used {
299 return None;
300 }
301
302 let unsize_generic_index = unsize_generic_index as usize;
303
304 // Check `Unsize` first
305 match self.check_unsize_and_coerce(
306 st1.get(unsize_generic_index)?,
307 st2.get(unsize_generic_index)?,
308 depth + 1,
309 ) {
310 Some(true) => {}
311 ret => return ret,
312 }
313
314 // Then unify other parameters
315 let ret = st1
316 .iter()
317 .zip(st2.iter())
318 .enumerate()
319 .filter(|&(idx, _)| idx != unsize_generic_index)
320 .all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
321
322 Some(ret)
323 }
324
325 _ => None,
326 }
327 }
328
329 /// Unify `from_ty` to `to_ty` with optional auto Deref
330 ///
331 /// Note that the parameters are already stripped the outer reference.
332 fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
333 let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone());
334 let to_ty = self.resolve_ty_shallow(&to_ty);
335 // FIXME: Auto DerefMut
336 for derefed_ty in autoderef::autoderef(
337 self.db,
338 self.resolver.krate(),
339 InEnvironment {
340 value: canonicalized.value.clone(),
341 environment: self.trait_env.clone(),
342 },
343 ) {
344 let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value);
345 match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) {
346 // Stop when constructor matches.
347 (ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => {
348 // It will not recurse to `coerce`.
349 return self.unify_substs(st1, st2, 0);
350 }
351 _ => {}
352 }
353 }
354
355 false
356 }
357}
diff --git a/crates/ra_hir/src/ty/infer/expr.rs b/crates/ra_hir/src/ty/infer/expr.rs
deleted file mode 100644
index f9ededa23..000000000
--- a/crates/ra_hir/src/ty/infer/expr.rs
+++ /dev/null
@@ -1,689 +0,0 @@
1//! Type inference for expressions.
2
3use std::iter::{repeat, repeat_with};
4use std::sync::Arc;
5
6use hir_def::{
7 builtin_type::Signedness,
8 expr::{Array, BinaryOp, Expr, ExprId, Literal, Statement, UnaryOp},
9 generics::GenericParams,
10 path::{GenericArg, GenericArgs},
11 resolver::resolver_for_expr,
12 AdtId, ContainerId, Lookup, StructFieldId,
13};
14use hir_expand::name::{self, Name};
15
16use crate::{
17 db::HirDatabase,
18 ty::{
19 autoderef, method_resolution, op, traits::InEnvironment, utils::variant_data, CallableDef,
20 InferTy, IntTy, Mutability, Obligation, ProjectionPredicate, ProjectionTy, Substs,
21 TraitRef, Ty, TypeCtor, TypeWalk, Uncertain,
22 },
23};
24
25use super::{BindingMode, Expectation, InferenceContext, InferenceDiagnostic, TypeMismatch};
26
27impl<'a, D: HirDatabase> InferenceContext<'a, D> {
28 pub(super) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
29 let ty = self.infer_expr_inner(tgt_expr, expected);
30 let could_unify = self.unify(&ty, &expected.ty);
31 if !could_unify {
32 self.result.type_mismatches.insert(
33 tgt_expr,
34 TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() },
35 );
36 }
37 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
38 ty
39 }
40
41 /// Infer type of expression with possibly implicit coerce to the expected type.
42 /// Return the type after possible coercion.
43 fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
44 let ty = self.infer_expr_inner(expr, &expected);
45 let ty = if !self.coerce(&ty, &expected.ty) {
46 self.result
47 .type_mismatches
48 .insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
49 // Return actual type when type mismatch.
50 // This is needed for diagnostic when return type mismatch.
51 ty
52 } else if expected.ty == Ty::Unknown {
53 ty
54 } else {
55 expected.ty.clone()
56 };
57
58 self.resolve_ty_as_possible(&mut vec![], ty)
59 }
60
61 fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
62 let body = Arc::clone(&self.body); // avoid borrow checker problem
63 let ty = match &body[tgt_expr] {
64 Expr::Missing => Ty::Unknown,
65 Expr::If { condition, then_branch, else_branch } => {
66 // if let is desugared to match, so this is always simple if
67 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
68
69 let then_ty = self.infer_expr_inner(*then_branch, &expected);
70 let else_ty = match else_branch {
71 Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
72 None => Ty::unit(),
73 };
74
75 self.coerce_merge_branch(&then_ty, &else_ty)
76 }
77 Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
78 Expr::TryBlock { body } => {
79 let _inner = self.infer_expr(*body, expected);
80 // FIXME should be std::result::Result<{inner}, _>
81 Ty::Unknown
82 }
83 Expr::Loop { body } => {
84 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
85 // FIXME handle break with value
86 Ty::simple(TypeCtor::Never)
87 }
88 Expr::While { condition, body } => {
89 // while let is desugared to a match loop, so this is always simple while
90 self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
91 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
92 Ty::unit()
93 }
94 Expr::For { iterable, body, pat } => {
95 let iterable_ty = self.infer_expr(*iterable, &Expectation::none());
96
97 let pat_ty = match self.resolve_into_iter_item() {
98 Some(into_iter_item_alias) => {
99 let pat_ty = self.new_type_var();
100 let projection = ProjectionPredicate {
101 ty: pat_ty.clone(),
102 projection_ty: ProjectionTy {
103 associated_ty: into_iter_item_alias,
104 parameters: Substs::single(iterable_ty),
105 },
106 };
107 self.obligations.push(Obligation::Projection(projection));
108 self.resolve_ty_as_possible(&mut vec![], pat_ty)
109 }
110 None => Ty::Unknown,
111 };
112
113 self.infer_pat(*pat, &pat_ty, BindingMode::default());
114 self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
115 Ty::unit()
116 }
117 Expr::Lambda { body, args, arg_types } => {
118 assert_eq!(args.len(), arg_types.len());
119
120 let mut sig_tys = Vec::new();
121
122 for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
123 let expected = if let Some(type_ref) = arg_type {
124 self.make_ty(type_ref)
125 } else {
126 Ty::Unknown
127 };
128 let arg_ty = self.infer_pat(*arg_pat, &expected, BindingMode::default());
129 sig_tys.push(arg_ty);
130 }
131
132 // add return type
133 let ret_ty = self.new_type_var();
134 sig_tys.push(ret_ty.clone());
135 let sig_ty = Ty::apply(
136 TypeCtor::FnPtr { num_args: sig_tys.len() as u16 - 1 },
137 Substs(sig_tys.into()),
138 );
139 let closure_ty = Ty::apply_one(
140 TypeCtor::Closure { def: self.owner.into(), expr: tgt_expr },
141 sig_ty,
142 );
143
144 // Eagerly try to relate the closure type with the expected
145 // type, otherwise we often won't have enough information to
146 // infer the body.
147 self.coerce(&closure_ty, &expected.ty);
148
149 self.infer_expr(*body, &Expectation::has_type(ret_ty));
150 closure_ty
151 }
152 Expr::Call { callee, args } => {
153 let callee_ty = self.infer_expr(*callee, &Expectation::none());
154 let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
155 Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
156 None => {
157 // Not callable
158 // FIXME: report an error
159 (Vec::new(), Ty::Unknown)
160 }
161 };
162 self.register_obligations_for_call(&callee_ty);
163 self.check_call_arguments(args, &param_tys);
164 let ret_ty = self.normalize_associated_types_in(ret_ty);
165 ret_ty
166 }
167 Expr::MethodCall { receiver, args, method_name, generic_args } => self
168 .infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
169 Expr::Match { expr, arms } => {
170 let input_ty = self.infer_expr(*expr, &Expectation::none());
171
172 let mut result_ty = self.new_maybe_never_type_var();
173
174 for arm in arms {
175 for &pat in &arm.pats {
176 let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
177 }
178 if let Some(guard_expr) = arm.guard {
179 self.infer_expr(
180 guard_expr,
181 &Expectation::has_type(Ty::simple(TypeCtor::Bool)),
182 );
183 }
184
185 let arm_ty = self.infer_expr_inner(arm.expr, &expected);
186 result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
187 }
188
189 result_ty
190 }
191 Expr::Path(p) => {
192 // FIXME this could be more efficient...
193 let resolver = resolver_for_expr(self.db, self.owner.into(), tgt_expr);
194 self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
195 }
196 Expr::Continue => Ty::simple(TypeCtor::Never),
197 Expr::Break { expr } => {
198 if let Some(expr) = expr {
199 // FIXME handle break with value
200 self.infer_expr(*expr, &Expectation::none());
201 }
202 Ty::simple(TypeCtor::Never)
203 }
204 Expr::Return { expr } => {
205 if let Some(expr) = expr {
206 self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
207 }
208 Ty::simple(TypeCtor::Never)
209 }
210 Expr::RecordLit { path, fields, spread } => {
211 let (ty, def_id) = self.resolve_variant(path.as_ref());
212 if let Some(variant) = def_id {
213 self.write_variant_resolution(tgt_expr.into(), variant);
214 }
215
216 self.unify(&ty, &expected.ty);
217
218 let substs = ty.substs().unwrap_or_else(Substs::empty);
219 let field_types =
220 def_id.map(|it| self.db.field_types(it.into())).unwrap_or_default();
221 let variant_data = def_id.map(|it| variant_data(self.db, it));
222 for (field_idx, field) in fields.iter().enumerate() {
223 let field_def =
224 variant_data.as_ref().and_then(|it| match it.field(&field.name) {
225 Some(local_id) => {
226 Some(StructFieldId { parent: def_id.unwrap(), local_id })
227 }
228 None => {
229 self.push_diagnostic(InferenceDiagnostic::NoSuchField {
230 expr: tgt_expr,
231 field: field_idx,
232 });
233 None
234 }
235 });
236 if let Some(field_def) = field_def {
237 self.result.record_field_resolutions.insert(field.expr, field_def);
238 }
239 let field_ty = field_def
240 .map_or(Ty::Unknown, |it| field_types[it.local_id].clone())
241 .subst(&substs);
242 self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
243 }
244 if let Some(expr) = spread {
245 self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
246 }
247 ty
248 }
249 Expr::Field { expr, name } => {
250 let receiver_ty = self.infer_expr(*expr, &Expectation::none());
251 let canonicalized = self.canonicalizer().canonicalize_ty(receiver_ty);
252 let ty = autoderef::autoderef(
253 self.db,
254 self.resolver.krate(),
255 InEnvironment {
256 value: canonicalized.value.clone(),
257 environment: self.trait_env.clone(),
258 },
259 )
260 .find_map(|derefed_ty| match canonicalized.decanonicalize_ty(derefed_ty.value) {
261 Ty::Apply(a_ty) => match a_ty.ctor {
262 TypeCtor::Tuple { .. } => name
263 .as_tuple_index()
264 .and_then(|idx| a_ty.parameters.0.get(idx).cloned()),
265 TypeCtor::Adt(AdtId::StructId(s)) => {
266 self.db.struct_data(s).variant_data.field(name).map(|local_id| {
267 let field = StructFieldId { parent: s.into(), local_id }.into();
268 self.write_field_resolution(tgt_expr, field);
269 self.db.field_types(s.into())[field.local_id]
270 .clone()
271 .subst(&a_ty.parameters)
272 })
273 }
274 // FIXME:
275 TypeCtor::Adt(AdtId::UnionId(_)) => None,
276 _ => None,
277 },
278 _ => None,
279 })
280 .unwrap_or(Ty::Unknown);
281 let ty = self.insert_type_vars(ty);
282 self.normalize_associated_types_in(ty)
283 }
284 Expr::Await { expr } => {
285 let inner_ty = self.infer_expr(*expr, &Expectation::none());
286 let ty = match self.resolve_future_future_output() {
287 Some(future_future_output_alias) => {
288 let ty = self.new_type_var();
289 let projection = ProjectionPredicate {
290 ty: ty.clone(),
291 projection_ty: ProjectionTy {
292 associated_ty: future_future_output_alias,
293 parameters: Substs::single(inner_ty),
294 },
295 };
296 self.obligations.push(Obligation::Projection(projection));
297 self.resolve_ty_as_possible(&mut vec![], ty)
298 }
299 None => Ty::Unknown,
300 };
301 ty
302 }
303 Expr::Try { expr } => {
304 let inner_ty = self.infer_expr(*expr, &Expectation::none());
305 let ty = match self.resolve_ops_try_ok() {
306 Some(ops_try_ok_alias) => {
307 let ty = self.new_type_var();
308 let projection = ProjectionPredicate {
309 ty: ty.clone(),
310 projection_ty: ProjectionTy {
311 associated_ty: ops_try_ok_alias,
312 parameters: Substs::single(inner_ty),
313 },
314 };
315 self.obligations.push(Obligation::Projection(projection));
316 self.resolve_ty_as_possible(&mut vec![], ty)
317 }
318 None => Ty::Unknown,
319 };
320 ty
321 }
322 Expr::Cast { expr, type_ref } => {
323 let _inner_ty = self.infer_expr(*expr, &Expectation::none());
324 let cast_ty = self.make_ty(type_ref);
325 // FIXME check the cast...
326 cast_ty
327 }
328 Expr::Ref { expr, mutability } => {
329 let expectation =
330 if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
331 if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
332 // FIXME: throw type error - expected mut reference but found shared ref,
333 // which cannot be coerced
334 }
335 Expectation::has_type(Ty::clone(exp_inner))
336 } else {
337 Expectation::none()
338 };
339 // FIXME reference coercions etc.
340 let inner_ty = self.infer_expr(*expr, &expectation);
341 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
342 }
343 Expr::Box { expr } => {
344 let inner_ty = self.infer_expr(*expr, &Expectation::none());
345 if let Some(box_) = self.resolve_boxed_box() {
346 Ty::apply_one(TypeCtor::Adt(box_), inner_ty)
347 } else {
348 Ty::Unknown
349 }
350 }
351 Expr::UnaryOp { expr, op } => {
352 let inner_ty = self.infer_expr(*expr, &Expectation::none());
353 match op {
354 UnaryOp::Deref => match self.resolver.krate() {
355 Some(krate) => {
356 let canonicalized = self.canonicalizer().canonicalize_ty(inner_ty);
357 match autoderef::deref(
358 self.db,
359 krate,
360 InEnvironment {
361 value: &canonicalized.value,
362 environment: self.trait_env.clone(),
363 },
364 ) {
365 Some(derefed_ty) => {
366 canonicalized.decanonicalize_ty(derefed_ty.value)
367 }
368 None => Ty::Unknown,
369 }
370 }
371 None => Ty::Unknown,
372 },
373 UnaryOp::Neg => {
374 match &inner_ty {
375 Ty::Apply(a_ty) => match a_ty.ctor {
376 TypeCtor::Int(Uncertain::Unknown)
377 | TypeCtor::Int(Uncertain::Known(IntTy {
378 signedness: Signedness::Signed,
379 ..
380 }))
381 | TypeCtor::Float(..) => inner_ty,
382 _ => Ty::Unknown,
383 },
384 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
385 inner_ty
386 }
387 // FIXME: resolve ops::Neg trait
388 _ => Ty::Unknown,
389 }
390 }
391 UnaryOp::Not => {
392 match &inner_ty {
393 Ty::Apply(a_ty) => match a_ty.ctor {
394 TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
395 _ => Ty::Unknown,
396 },
397 Ty::Infer(InferTy::IntVar(..)) => inner_ty,
398 // FIXME: resolve ops::Not trait for inner_ty
399 _ => Ty::Unknown,
400 }
401 }
402 }
403 }
404 Expr::BinaryOp { lhs, rhs, op } => match op {
405 Some(op) => {
406 let lhs_expectation = match op {
407 BinaryOp::LogicOp(..) => Expectation::has_type(Ty::simple(TypeCtor::Bool)),
408 _ => Expectation::none(),
409 };
410 let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
411 // FIXME: find implementation of trait corresponding to operation
412 // symbol and resolve associated `Output` type
413 let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
414 let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
415
416 // FIXME: similar as above, return ty is often associated trait type
417 op::binary_op_return_ty(*op, rhs_ty)
418 }
419 _ => Ty::Unknown,
420 },
421 Expr::Index { base, index } => {
422 let _base_ty = self.infer_expr(*base, &Expectation::none());
423 let _index_ty = self.infer_expr(*index, &Expectation::none());
424 // FIXME: use `std::ops::Index::Output` to figure out the real return type
425 Ty::Unknown
426 }
427 Expr::Tuple { exprs } => {
428 let mut tys = match &expected.ty {
429 ty_app!(TypeCtor::Tuple { .. }, st) => st
430 .iter()
431 .cloned()
432 .chain(repeat_with(|| self.new_type_var()))
433 .take(exprs.len())
434 .collect::<Vec<_>>(),
435 _ => (0..exprs.len()).map(|_| self.new_type_var()).collect(),
436 };
437
438 for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
439 self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
440 }
441
442 Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
443 }
444 Expr::Array(array) => {
445 let elem_ty = match &expected.ty {
446 ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
447 st.as_single().clone()
448 }
449 _ => self.new_type_var(),
450 };
451
452 match array {
453 Array::ElementList(items) => {
454 for expr in items.iter() {
455 self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
456 }
457 }
458 Array::Repeat { initializer, repeat } => {
459 self.infer_expr_coerce(
460 *initializer,
461 &Expectation::has_type(elem_ty.clone()),
462 );
463 self.infer_expr(
464 *repeat,
465 &Expectation::has_type(Ty::simple(TypeCtor::Int(Uncertain::Known(
466 IntTy::usize(),
467 )))),
468 );
469 }
470 }
471
472 Ty::apply_one(TypeCtor::Array, elem_ty)
473 }
474 Expr::Literal(lit) => match lit {
475 Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
476 Literal::String(..) => {
477 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
478 }
479 Literal::ByteString(..) => {
480 let byte_type = Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::u8())));
481 let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
482 Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
483 }
484 Literal::Char(..) => Ty::simple(TypeCtor::Char),
485 Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int((*ty).into())),
486 Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float((*ty).into())),
487 },
488 };
489 // use a new type variable if we got Ty::Unknown here
490 let ty = self.insert_type_vars_shallow(ty);
491 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
492 self.write_expr_ty(tgt_expr, ty.clone());
493 ty
494 }
495
496 fn infer_block(
497 &mut self,
498 statements: &[Statement],
499 tail: Option<ExprId>,
500 expected: &Expectation,
501 ) -> Ty {
502 let mut diverges = false;
503 for stmt in statements {
504 match stmt {
505 Statement::Let { pat, type_ref, initializer } => {
506 let decl_ty =
507 type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
508
509 // Always use the declared type when specified
510 let mut ty = decl_ty.clone();
511
512 if let Some(expr) = initializer {
513 let actual_ty =
514 self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
515 if decl_ty == Ty::Unknown {
516 ty = actual_ty;
517 }
518 }
519
520 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
521 self.infer_pat(*pat, &ty, BindingMode::default());
522 }
523 Statement::Expr(expr) => {
524 if let ty_app!(TypeCtor::Never) = self.infer_expr(*expr, &Expectation::none()) {
525 diverges = true;
526 }
527 }
528 }
529 }
530
531 let ty = if let Some(expr) = tail {
532 self.infer_expr_coerce(expr, expected)
533 } else {
534 self.coerce(&Ty::unit(), &expected.ty);
535 Ty::unit()
536 };
537 if diverges {
538 Ty::simple(TypeCtor::Never)
539 } else {
540 ty
541 }
542 }
543
544 fn infer_method_call(
545 &mut self,
546 tgt_expr: ExprId,
547 receiver: ExprId,
548 args: &[ExprId],
549 method_name: &Name,
550 generic_args: Option<&GenericArgs>,
551 ) -> Ty {
552 let receiver_ty = self.infer_expr(receiver, &Expectation::none());
553 let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
554 let resolved = method_resolution::lookup_method(
555 &canonicalized_receiver.value,
556 self.db,
557 method_name,
558 &self.resolver,
559 );
560 let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
561 Some((ty, func)) => {
562 let ty = canonicalized_receiver.decanonicalize_ty(ty);
563 self.write_method_resolution(tgt_expr, func);
564 (ty, self.db.value_ty(func.into()), Some(self.db.generic_params(func.into())))
565 }
566 None => (receiver_ty, Ty::Unknown, None),
567 };
568 let substs = self.substs_for_method_call(def_generics, generic_args, &derefed_receiver_ty);
569 let method_ty = method_ty.apply_substs(substs);
570 let method_ty = self.insert_type_vars(method_ty);
571 self.register_obligations_for_call(&method_ty);
572 let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
573 Some(sig) => {
574 if !sig.params().is_empty() {
575 (sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
576 } else {
577 (Ty::Unknown, Vec::new(), sig.ret().clone())
578 }
579 }
580 None => (Ty::Unknown, Vec::new(), Ty::Unknown),
581 };
582 // Apply autoref so the below unification works correctly
583 // FIXME: return correct autorefs from lookup_method
584 let actual_receiver_ty = match expected_receiver_ty.as_reference() {
585 Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
586 _ => derefed_receiver_ty,
587 };
588 self.unify(&expected_receiver_ty, &actual_receiver_ty);
589
590 self.check_call_arguments(args, &param_tys);
591 let ret_ty = self.normalize_associated_types_in(ret_ty);
592 ret_ty
593 }
594
595 fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
596 // Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
597 // We do this in a pretty awful way: first we type-check any arguments
598 // that are not closures, then we type-check the closures. This is so
599 // that we have more information about the types of arguments when we
600 // type-check the functions. This isn't really the right way to do this.
601 for &check_closures in &[false, true] {
602 let param_iter = param_tys.iter().cloned().chain(repeat(Ty::Unknown));
603 for (&arg, param_ty) in args.iter().zip(param_iter) {
604 let is_closure = match &self.body[arg] {
605 Expr::Lambda { .. } => true,
606 _ => false,
607 };
608
609 if is_closure != check_closures {
610 continue;
611 }
612
613 let param_ty = self.normalize_associated_types_in(param_ty);
614 self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
615 }
616 }
617 }
618
619 fn substs_for_method_call(
620 &mut self,
621 def_generics: Option<Arc<GenericParams>>,
622 generic_args: Option<&GenericArgs>,
623 receiver_ty: &Ty,
624 ) -> Substs {
625 let (parent_param_count, param_count) =
626 def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
627 let mut substs = Vec::with_capacity(parent_param_count + param_count);
628 // Parent arguments are unknown, except for the receiver type
629 if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
630 for param in &parent_generics.params {
631 if param.name == name::SELF_TYPE {
632 substs.push(receiver_ty.clone());
633 } else {
634 substs.push(Ty::Unknown);
635 }
636 }
637 }
638 // handle provided type arguments
639 if let Some(generic_args) = generic_args {
640 // if args are provided, it should be all of them, but we can't rely on that
641 for arg in generic_args.args.iter().take(param_count) {
642 match arg {
643 GenericArg::Type(type_ref) => {
644 let ty = self.make_ty(type_ref);
645 substs.push(ty);
646 }
647 }
648 }
649 };
650 let supplied_params = substs.len();
651 for _ in supplied_params..parent_param_count + param_count {
652 substs.push(Ty::Unknown);
653 }
654 assert_eq!(substs.len(), parent_param_count + param_count);
655 Substs(substs.into())
656 }
657
658 fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
659 if let Ty::Apply(a_ty) = callable_ty {
660 if let TypeCtor::FnDef(def) = a_ty.ctor {
661 let generic_predicates = self.db.generic_predicates(def.into());
662 for predicate in generic_predicates.iter() {
663 let predicate = predicate.clone().subst(&a_ty.parameters);
664 if let Some(obligation) = Obligation::from_predicate(predicate) {
665 self.obligations.push(obligation);
666 }
667 }
668 // add obligation for trait implementation, if this is a trait method
669 match def {
670 CallableDef::FunctionId(f) => {
671 if let ContainerId::TraitId(trait_) = f.lookup(self.db).container {
672 // construct a TraitDef
673 let substs = a_ty.parameters.prefix(
674 self.db
675 .generic_params(trait_.into())
676 .count_params_including_parent(),
677 );
678 self.obligations.push(Obligation::Trait(TraitRef {
679 trait_: trait_.into(),
680 substs,
681 }));
682 }
683 }
684 CallableDef::StructId(_) | CallableDef::EnumVariantId(_) => {}
685 }
686 }
687 }
688 }
689}
diff --git a/crates/ra_hir/src/ty/infer/pat.rs b/crates/ra_hir/src/ty/infer/pat.rs
deleted file mode 100644
index a14774607..000000000
--- a/crates/ra_hir/src/ty/infer/pat.rs
+++ /dev/null
@@ -1,189 +0,0 @@
1//! Type inference for patterns.
2
3use std::iter::repeat;
4use std::sync::Arc;
5
6use hir_def::{
7 expr::{BindingAnnotation, Pat, PatId, RecordFieldPat},
8 path::Path,
9 type_ref::Mutability,
10};
11use hir_expand::name::Name;
12use test_utils::tested_by;
13
14use super::{BindingMode, InferenceContext};
15use crate::{
16 db::HirDatabase,
17 ty::{utils::variant_data, Substs, Ty, TypeCtor, TypeWalk},
18};
19
20impl<'a, D: HirDatabase> InferenceContext<'a, D> {
21 fn infer_tuple_struct_pat(
22 &mut self,
23 path: Option<&Path>,
24 subpats: &[PatId],
25 expected: &Ty,
26 default_bm: BindingMode,
27 ) -> Ty {
28 let (ty, def) = self.resolve_variant(path);
29 let var_data = def.map(|it| variant_data(self.db, it));
30 self.unify(&ty, expected);
31
32 let substs = ty.substs().unwrap_or_else(Substs::empty);
33
34 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
35
36 for (i, &subpat) in subpats.iter().enumerate() {
37 let expected_ty = var_data
38 .as_ref()
39 .and_then(|d| d.field(&Name::new_tuple_field(i)))
40 .map_or(Ty::Unknown, |field| field_tys[field].clone())
41 .subst(&substs);
42 let expected_ty = self.normalize_associated_types_in(expected_ty);
43 self.infer_pat(subpat, &expected_ty, default_bm);
44 }
45
46 ty
47 }
48
49 fn infer_record_pat(
50 &mut self,
51 path: Option<&Path>,
52 subpats: &[RecordFieldPat],
53 expected: &Ty,
54 default_bm: BindingMode,
55 id: PatId,
56 ) -> Ty {
57 let (ty, def) = self.resolve_variant(path);
58 let var_data = def.map(|it| variant_data(self.db, it));
59 if let Some(variant) = def {
60 self.write_variant_resolution(id.into(), variant);
61 }
62
63 self.unify(&ty, expected);
64
65 let substs = ty.substs().unwrap_or_else(Substs::empty);
66
67 let field_tys = def.map(|it| self.db.field_types(it.into())).unwrap_or_default();
68 for subpat in subpats {
69 let matching_field = var_data.as_ref().and_then(|it| it.field(&subpat.name));
70 let expected_ty =
71 matching_field.map_or(Ty::Unknown, |field| field_tys[field].clone()).subst(&substs);
72 let expected_ty = self.normalize_associated_types_in(expected_ty);
73 self.infer_pat(subpat.pat, &expected_ty, default_bm);
74 }
75
76 ty
77 }
78
79 pub(super) fn infer_pat(
80 &mut self,
81 pat: PatId,
82 mut expected: &Ty,
83 mut default_bm: BindingMode,
84 ) -> Ty {
85 let body = Arc::clone(&self.body); // avoid borrow checker problem
86
87 let is_non_ref_pat = match &body[pat] {
88 Pat::Tuple(..)
89 | Pat::TupleStruct { .. }
90 | Pat::Record { .. }
91 | Pat::Range { .. }
92 | Pat::Slice { .. } => true,
93 // FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
94 Pat::Path(..) | Pat::Lit(..) => true,
95 Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
96 };
97 if is_non_ref_pat {
98 while let Some((inner, mutability)) = expected.as_reference() {
99 expected = inner;
100 default_bm = match default_bm {
101 BindingMode::Move => BindingMode::Ref(mutability),
102 BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
103 BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
104 }
105 }
106 } else if let Pat::Ref { .. } = &body[pat] {
107 tested_by!(match_ergonomics_ref);
108 // When you encounter a `&pat` pattern, reset to Move.
109 // This is so that `w` is by value: `let (_, &w) = &(1, &2);`
110 default_bm = BindingMode::Move;
111 }
112
113 // Lose mutability.
114 let default_bm = default_bm;
115 let expected = expected;
116
117 let ty = match &body[pat] {
118 Pat::Tuple(ref args) => {
119 let expectations = match expected.as_tuple() {
120 Some(parameters) => &*parameters.0,
121 _ => &[],
122 };
123 let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
124
125 let inner_tys = args
126 .iter()
127 .zip(expectations_iter)
128 .map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
129 .collect();
130
131 Ty::apply(TypeCtor::Tuple { cardinality: args.len() as u16 }, Substs(inner_tys))
132 }
133 Pat::Ref { pat, mutability } => {
134 let expectation = match expected.as_reference() {
135 Some((inner_ty, exp_mut)) => {
136 if *mutability != exp_mut {
137 // FIXME: emit type error?
138 }
139 inner_ty
140 }
141 _ => &Ty::Unknown,
142 };
143 let subty = self.infer_pat(*pat, expectation, default_bm);
144 Ty::apply_one(TypeCtor::Ref(*mutability), subty)
145 }
146 Pat::TupleStruct { path: p, args: subpats } => {
147 self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
148 }
149 Pat::Record { path: p, args: fields } => {
150 self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat)
151 }
152 Pat::Path(path) => {
153 // FIXME use correct resolver for the surrounding expression
154 let resolver = self.resolver.clone();
155 self.infer_path(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
156 }
157 Pat::Bind { mode, name: _, subpat } => {
158 let mode = if mode == &BindingAnnotation::Unannotated {
159 default_bm
160 } else {
161 BindingMode::convert(*mode)
162 };
163 let inner_ty = if let Some(subpat) = subpat {
164 self.infer_pat(*subpat, expected, default_bm)
165 } else {
166 expected.clone()
167 };
168 let inner_ty = self.insert_type_vars_shallow(inner_ty);
169
170 let bound_ty = match mode {
171 BindingMode::Ref(mutability) => {
172 Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone())
173 }
174 BindingMode::Move => inner_ty.clone(),
175 };
176 let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
177 self.write_pat_ty(pat, bound_ty);
178 return inner_ty;
179 }
180 _ => Ty::Unknown,
181 };
182 // use a new type variable if we got Ty::Unknown here
183 let ty = self.insert_type_vars_shallow(ty);
184 self.unify(&ty, expected);
185 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
186 self.write_pat_ty(pat, ty.clone());
187 ty
188 }
189}
diff --git a/crates/ra_hir/src/ty/infer/path.rs b/crates/ra_hir/src/ty/infer/path.rs
deleted file mode 100644
index 09ff79728..000000000
--- a/crates/ra_hir/src/ty/infer/path.rs
+++ /dev/null
@@ -1,273 +0,0 @@
1//! Path expression resolution.
2
3use hir_def::{
4 path::{Path, PathSegment},
5 resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs},
6 AssocItemId, ContainerId, Lookup,
7};
8use hir_expand::name::Name;
9
10use crate::{
11 db::HirDatabase,
12 ty::{method_resolution, Substs, Ty, TypeWalk, ValueTyDefId},
13};
14
15use super::{ExprOrPatId, InferenceContext, TraitRef};
16
17impl<'a, D: HirDatabase> InferenceContext<'a, D> {
18 pub(super) fn infer_path(
19 &mut self,
20 resolver: &Resolver,
21 path: &Path,
22 id: ExprOrPatId,
23 ) -> Option<Ty> {
24 let ty = self.resolve_value_path(resolver, path, id)?;
25 let ty = self.insert_type_vars(ty);
26 let ty = self.normalize_associated_types_in(ty);
27 Some(ty)
28 }
29
30 fn resolve_value_path(
31 &mut self,
32 resolver: &Resolver,
33 path: &Path,
34 id: ExprOrPatId,
35 ) -> Option<Ty> {
36 let (value, self_subst) = if let crate::PathKind::Type(type_ref) = &path.kind {
37 if path.segments.is_empty() {
38 // This can't actually happen syntax-wise
39 return None;
40 }
41 let ty = self.make_ty(type_ref);
42 let remaining_segments_for_ty = &path.segments[..path.segments.len() - 1];
43 let ty = Ty::from_type_relative_path(self.db, resolver, ty, remaining_segments_for_ty);
44 self.resolve_ty_assoc_item(
45 ty,
46 &path.segments.last().expect("path had at least one segment").name,
47 id,
48 )?
49 } else {
50 let value_or_partial = resolver.resolve_path_in_value_ns(self.db, &path)?;
51
52 match value_or_partial {
53 ResolveValueResult::ValueNs(it) => (it, None),
54 ResolveValueResult::Partial(def, remaining_index) => {
55 self.resolve_assoc_item(def, path, remaining_index, id)?
56 }
57 }
58 };
59
60 let typable: ValueTyDefId = match value {
61 ValueNs::LocalBinding(pat) => {
62 let ty = self.result.type_of_pat.get(pat)?.clone();
63 let ty = self.resolve_ty_as_possible(&mut vec![], ty);
64 return Some(ty);
65 }
66 ValueNs::FunctionId(it) => it.into(),
67 ValueNs::ConstId(it) => it.into(),
68 ValueNs::StaticId(it) => it.into(),
69 ValueNs::StructId(it) => it.into(),
70 ValueNs::EnumVariantId(it) => it.into(),
71 };
72
73 let mut ty = self.db.value_ty(typable);
74 if let Some(self_subst) = self_subst {
75 ty = ty.subst(&self_subst);
76 }
77 let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
78 let ty = ty.subst(&substs);
79 Some(ty)
80 }
81
82 fn resolve_assoc_item(
83 &mut self,
84 def: TypeNs,
85 path: &Path,
86 remaining_index: usize,
87 id: ExprOrPatId,
88 ) -> Option<(ValueNs, Option<Substs>)> {
89 assert!(remaining_index < path.segments.len());
90 // there may be more intermediate segments between the resolved one and
91 // the end. Only the last segment needs to be resolved to a value; from
92 // the segments before that, we need to get either a type or a trait ref.
93
94 let resolved_segment = &path.segments[remaining_index - 1];
95 let remaining_segments = &path.segments[remaining_index..];
96 let is_before_last = remaining_segments.len() == 1;
97
98 match (def, is_before_last) {
99 (TypeNs::TraitId(trait_), true) => {
100 let segment =
101 remaining_segments.last().expect("there should be at least one segment here");
102 let trait_ref = TraitRef::from_resolved_path(
103 self.db,
104 &self.resolver,
105 trait_.into(),
106 resolved_segment,
107 None,
108 );
109 self.resolve_trait_assoc_item(trait_ref, segment, id)
110 }
111 (def, _) => {
112 // Either we already have a type (e.g. `Vec::new`), or we have a
113 // trait but it's not the last segment, so the next segment
114 // should resolve to an associated type of that trait (e.g. `<T
115 // as Iterator>::Item::default`)
116 let remaining_segments_for_ty = &remaining_segments[..remaining_segments.len() - 1];
117 let ty = Ty::from_partly_resolved_hir_path(
118 self.db,
119 &self.resolver,
120 def,
121 resolved_segment,
122 remaining_segments_for_ty,
123 );
124 if let Ty::Unknown = ty {
125 return None;
126 }
127
128 let ty = self.insert_type_vars(ty);
129 let ty = self.normalize_associated_types_in(ty);
130
131 let segment =
132 remaining_segments.last().expect("there should be at least one segment here");
133
134 self.resolve_ty_assoc_item(ty, &segment.name, id)
135 }
136 }
137 }
138
139 fn resolve_trait_assoc_item(
140 &mut self,
141 trait_ref: TraitRef,
142 segment: &PathSegment,
143 id: ExprOrPatId,
144 ) -> Option<(ValueNs, Option<Substs>)> {
145 let trait_ = trait_ref.trait_;
146 let item = self
147 .db
148 .trait_data(trait_)
149 .items
150 .iter()
151 .map(|(_name, id)| (*id).into())
152 .find_map(|item| match item {
153 AssocItemId::FunctionId(func) => {
154 if segment.name == self.db.function_data(func).name {
155 Some(AssocItemId::FunctionId(func))
156 } else {
157 None
158 }
159 }
160
161 AssocItemId::ConstId(konst) => {
162 if self.db.const_data(konst).name.as_ref().map_or(false, |n| n == &segment.name)
163 {
164 Some(AssocItemId::ConstId(konst))
165 } else {
166 None
167 }
168 }
169 AssocItemId::TypeAliasId(_) => None,
170 })?;
171 let def = match item {
172 AssocItemId::FunctionId(f) => ValueNs::FunctionId(f),
173 AssocItemId::ConstId(c) => ValueNs::ConstId(c),
174 AssocItemId::TypeAliasId(_) => unreachable!(),
175 };
176 let substs = Substs::build_for_def(self.db, item)
177 .use_parent_substs(&trait_ref.substs)
178 .fill_with_params()
179 .build();
180
181 self.write_assoc_resolution(id, item);
182 Some((def, Some(substs)))
183 }
184
185 fn resolve_ty_assoc_item(
186 &mut self,
187 ty: Ty,
188 name: &Name,
189 id: ExprOrPatId,
190 ) -> Option<(ValueNs, Option<Substs>)> {
191 if let Ty::Unknown = ty {
192 return None;
193 }
194
195 let canonical_ty = self.canonicalizer().canonicalize_ty(ty.clone());
196
197 method_resolution::iterate_method_candidates(
198 &canonical_ty.value,
199 self.db,
200 &self.resolver.clone(),
201 Some(name),
202 method_resolution::LookupMode::Path,
203 move |_ty, item| {
204 let (def, container) = match item {
205 AssocItemId::FunctionId(f) => {
206 (ValueNs::FunctionId(f), f.lookup(self.db).container)
207 }
208 AssocItemId::ConstId(c) => (ValueNs::ConstId(c), c.lookup(self.db).container),
209 AssocItemId::TypeAliasId(_) => unreachable!(),
210 };
211 let substs = match container {
212 ContainerId::ImplId(_) => self.find_self_types(&def, ty.clone()),
213 ContainerId::TraitId(trait_) => {
214 // we're picking this method
215 let trait_substs = Substs::build_for_def(self.db, trait_)
216 .push(ty.clone())
217 .fill(std::iter::repeat_with(|| self.new_type_var()))
218 .build();
219 let substs = Substs::build_for_def(self.db, item)
220 .use_parent_substs(&trait_substs)
221 .fill_with_params()
222 .build();
223 self.obligations.push(super::Obligation::Trait(TraitRef {
224 trait_,
225 substs: trait_substs,
226 }));
227 Some(substs)
228 }
229 ContainerId::ModuleId(_) => None,
230 };
231
232 self.write_assoc_resolution(id, item.into());
233 Some((def, substs))
234 },
235 )
236 }
237
238 fn find_self_types(&self, def: &ValueNs, actual_def_ty: Ty) -> Option<Substs> {
239 if let ValueNs::FunctionId(func) = *def {
240 // We only do the infer if parent has generic params
241 let gen = self.db.generic_params(func.into());
242 if gen.count_parent_params() == 0 {
243 return None;
244 }
245
246 let impl_id = match func.lookup(self.db).container {
247 ContainerId::ImplId(it) => it,
248 _ => return None,
249 };
250 let resolver = impl_id.resolver(self.db);
251 let impl_data = self.db.impl_data(impl_id);
252 let impl_block = Ty::from_hir(self.db, &resolver, &impl_data.target_type);
253 let impl_block_substs = impl_block.substs()?;
254 let actual_substs = actual_def_ty.substs()?;
255
256 let mut new_substs = vec![Ty::Unknown; gen.count_parent_params()];
257
258 // The following code *link up* the function actual parma type
259 // and impl_block type param index
260 impl_block_substs.iter().zip(actual_substs.iter()).for_each(|(param, pty)| {
261 if let Ty::Param { idx, .. } = param {
262 if let Some(s) = new_substs.get_mut(*idx as usize) {
263 *s = pty.clone();
264 }
265 }
266 });
267
268 Some(Substs(new_substs.into()))
269 } else {
270 None
271 }
272 }
273}
diff --git a/crates/ra_hir/src/ty/infer/unify.rs b/crates/ra_hir/src/ty/infer/unify.rs
deleted file mode 100644
index e27bb2f82..000000000
--- a/crates/ra_hir/src/ty/infer/unify.rs
+++ /dev/null
@@ -1,166 +0,0 @@
1//! Unification and canonicalization logic.
2
3use super::{InferenceContext, Obligation};
4use crate::{
5 db::HirDatabase,
6 ty::{
7 Canonical, InEnvironment, InferTy, ProjectionPredicate, ProjectionTy, Substs, TraitRef, Ty,
8 TypeWalk,
9 },
10 util::make_mut_slice,
11};
12
13impl<'a, D: HirDatabase> InferenceContext<'a, D> {
14 pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b, D>
15 where
16 'a: 'b,
17 {
18 Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
19 }
20}
21
22pub(super) struct Canonicalizer<'a, 'b, D: HirDatabase>
23where
24 'a: 'b,
25{
26 ctx: &'b mut InferenceContext<'a, D>,
27 free_vars: Vec<InferTy>,
28 /// A stack of type variables that is used to detect recursive types (which
29 /// are an error, but we need to protect against them to avoid stack
30 /// overflows).
31 var_stack: Vec<super::TypeVarId>,
32}
33
34pub(super) struct Canonicalized<T> {
35 pub value: Canonical<T>,
36 free_vars: Vec<InferTy>,
37}
38
39impl<'a, 'b, D: HirDatabase> Canonicalizer<'a, 'b, D>
40where
41 'a: 'b,
42{
43 fn add(&mut self, free_var: InferTy) -> usize {
44 self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| {
45 let next_index = self.free_vars.len();
46 self.free_vars.push(free_var);
47 next_index
48 })
49 }
50
51 fn do_canonicalize_ty(&mut self, ty: Ty) -> Ty {
52 ty.fold(&mut |ty| match ty {
53 Ty::Infer(tv) => {
54 let inner = tv.to_inner();
55 if self.var_stack.contains(&inner) {
56 // recursive type
57 return tv.fallback_value();
58 }
59 if let Some(known_ty) =
60 self.ctx.var_unification_table.inlined_probe_value(inner).known()
61 {
62 self.var_stack.push(inner);
63 let result = self.do_canonicalize_ty(known_ty.clone());
64 self.var_stack.pop();
65 result
66 } else {
67 let root = self.ctx.var_unification_table.find(inner);
68 let free_var = match tv {
69 InferTy::TypeVar(_) => InferTy::TypeVar(root),
70 InferTy::IntVar(_) => InferTy::IntVar(root),
71 InferTy::FloatVar(_) => InferTy::FloatVar(root),
72 InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
73 };
74 let position = self.add(free_var);
75 Ty::Bound(position as u32)
76 }
77 }
78 _ => ty,
79 })
80 }
81
82 fn do_canonicalize_trait_ref(&mut self, mut trait_ref: TraitRef) -> TraitRef {
83 for ty in make_mut_slice(&mut trait_ref.substs.0) {
84 *ty = self.do_canonicalize_ty(ty.clone());
85 }
86 trait_ref
87 }
88
89 fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
90 Canonicalized {
91 value: Canonical { value: result, num_vars: self.free_vars.len() },
92 free_vars: self.free_vars,
93 }
94 }
95
96 fn do_canonicalize_projection_ty(&mut self, mut projection_ty: ProjectionTy) -> ProjectionTy {
97 for ty in make_mut_slice(&mut projection_ty.parameters.0) {
98 *ty = self.do_canonicalize_ty(ty.clone());
99 }
100 projection_ty
101 }
102
103 fn do_canonicalize_projection_predicate(
104 &mut self,
105 projection: ProjectionPredicate,
106 ) -> ProjectionPredicate {
107 let ty = self.do_canonicalize_ty(projection.ty);
108 let projection_ty = self.do_canonicalize_projection_ty(projection.projection_ty);
109
110 ProjectionPredicate { ty, projection_ty }
111 }
112
113 // FIXME: add some point, we need to introduce a `Fold` trait that abstracts
114 // over all the things that can be canonicalized (like Chalk and rustc have)
115
116 pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
117 let result = self.do_canonicalize_ty(ty);
118 self.into_canonicalized(result)
119 }
120
121 pub(crate) fn canonicalize_obligation(
122 mut self,
123 obligation: InEnvironment<Obligation>,
124 ) -> Canonicalized<InEnvironment<Obligation>> {
125 let result = match obligation.value {
126 Obligation::Trait(tr) => Obligation::Trait(self.do_canonicalize_trait_ref(tr)),
127 Obligation::Projection(pr) => {
128 Obligation::Projection(self.do_canonicalize_projection_predicate(pr))
129 }
130 };
131 self.into_canonicalized(InEnvironment {
132 value: result,
133 environment: obligation.environment,
134 })
135 }
136}
137
138impl<T> Canonicalized<T> {
139 pub fn decanonicalize_ty(&self, mut ty: Ty) -> Ty {
140 ty.walk_mut_binders(
141 &mut |ty, binders| match ty {
142 &mut Ty::Bound(idx) => {
143 if idx as usize >= binders && (idx as usize - binders) < self.free_vars.len() {
144 *ty = Ty::Infer(self.free_vars[idx as usize - binders]);
145 }
146 }
147 _ => {}
148 },
149 0,
150 );
151 ty
152 }
153
154 pub fn apply_solution(
155 &self,
156 ctx: &mut InferenceContext<'_, impl HirDatabase>,
157 solution: Canonical<Vec<Ty>>,
158 ) {
159 // the solution may contain new variables, which we need to convert to new inference vars
160 let new_vars = Substs((0..solution.num_vars).map(|_| ctx.new_type_var()).collect());
161 for (i, ty) in solution.value.into_iter().enumerate() {
162 let var = self.free_vars[i];
163 ctx.unify(&Ty::Infer(var), &ty.subst_bound_vars(&new_vars));
164 }
165 }
166}
diff --git a/crates/ra_hir/src/ty/lower.rs b/crates/ra_hir/src/ty/lower.rs
deleted file mode 100644
index 2d447f1ea..000000000
--- a/crates/ra_hir/src/ty/lower.rs
+++ /dev/null
@@ -1,755 +0,0 @@
1//! Methods for lowering the HIR to types. There are two main cases here:
2//!
3//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
4//! type: The entry point for this is `Ty::from_hir`.
5//! - Building the type for an item: This happens through the `type_for_def` query.
6//!
7//! This usually involves resolving names, collecting generic arguments etc.
8use std::iter;
9use std::sync::Arc;
10
11use hir_def::{
12 builtin_type::BuiltinType,
13 generics::WherePredicate,
14 path::{GenericArg, Path, PathSegment},
15 resolver::{HasResolver, Resolver, TypeNs},
16 type_ref::{TypeBound, TypeRef},
17 AdtId, AstItemDef, ConstId, EnumId, EnumVariantId, FunctionId, GenericDefId, HasModule,
18 LocalStructFieldId, Lookup, StaticId, StructId, TraitId, TypeAliasId, UnionId, VariantId,
19};
20use ra_arena::map::ArenaMap;
21use ra_db::CrateId;
22
23use super::{
24 FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitEnvironment, TraitRef,
25 Ty, TypeCtor, TypeWalk,
26};
27use crate::{
28 db::HirDatabase,
29 ty::{
30 primitive::{FloatTy, IntTy},
31 utils::{all_super_traits, associated_type_by_name_including_super_traits, variant_data},
32 },
33 util::make_mut_slice,
34};
35
36impl Ty {
37 pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self {
38 match type_ref {
39 TypeRef::Never => Ty::simple(TypeCtor::Never),
40 TypeRef::Tuple(inner) => {
41 let inner_tys: Arc<[Ty]> =
42 inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect();
43 Ty::apply(
44 TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
45 Substs(inner_tys),
46 )
47 }
48 TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path),
49 TypeRef::RawPtr(inner, mutability) => {
50 let inner_ty = Ty::from_hir(db, resolver, inner);
51 Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
52 }
53 TypeRef::Array(inner) => {
54 let inner_ty = Ty::from_hir(db, resolver, inner);
55 Ty::apply_one(TypeCtor::Array, inner_ty)
56 }
57 TypeRef::Slice(inner) => {
58 let inner_ty = Ty::from_hir(db, resolver, inner);
59 Ty::apply_one(TypeCtor::Slice, inner_ty)
60 }
61 TypeRef::Reference(inner, mutability) => {
62 let inner_ty = Ty::from_hir(db, resolver, inner);
63 Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
64 }
65 TypeRef::Placeholder => Ty::Unknown,
66 TypeRef::Fn(params) => {
67 let sig = Substs(params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect());
68 Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
69 }
70 TypeRef::DynTrait(bounds) => {
71 let self_ty = Ty::Bound(0);
72 let predicates = bounds
73 .iter()
74 .flat_map(|b| {
75 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
76 })
77 .collect();
78 Ty::Dyn(predicates)
79 }
80 TypeRef::ImplTrait(bounds) => {
81 let self_ty = Ty::Bound(0);
82 let predicates = bounds
83 .iter()
84 .flat_map(|b| {
85 GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone())
86 })
87 .collect();
88 Ty::Opaque(predicates)
89 }
90 TypeRef::Error => Ty::Unknown,
91 }
92 }
93
94 /// This is only for `generic_predicates_for_param`, where we can't just
95 /// lower the self types of the predicates since that could lead to cycles.
96 /// So we just check here if the `type_ref` resolves to a generic param, and which.
97 fn from_hir_only_param(
98 db: &impl HirDatabase,
99 resolver: &Resolver,
100 type_ref: &TypeRef,
101 ) -> Option<u32> {
102 let path = match type_ref {
103 TypeRef::Path(path) => path,
104 _ => return None,
105 };
106 if let crate::PathKind::Type(_) = &path.kind {
107 return None;
108 }
109 if path.segments.len() > 1 {
110 return None;
111 }
112 let resolution = match resolver.resolve_path_in_type_ns(db, path) {
113 Some((it, None)) => it,
114 _ => return None,
115 };
116 if let TypeNs::GenericParam(idx) = resolution {
117 Some(idx)
118 } else {
119 None
120 }
121 }
122
123 pub(crate) fn from_type_relative_path(
124 db: &impl HirDatabase,
125 resolver: &Resolver,
126 ty: Ty,
127 remaining_segments: &[PathSegment],
128 ) -> Ty {
129 if remaining_segments.len() == 1 {
130 // resolve unselected assoc types
131 let segment = &remaining_segments[0];
132 Ty::select_associated_type(db, resolver, ty, segment)
133 } else if remaining_segments.len() > 1 {
134 // FIXME report error (ambiguous associated type)
135 Ty::Unknown
136 } else {
137 ty
138 }
139 }
140
141 pub(crate) fn from_partly_resolved_hir_path(
142 db: &impl HirDatabase,
143 resolver: &Resolver,
144 resolution: TypeNs,
145 resolved_segment: &PathSegment,
146 remaining_segments: &[PathSegment],
147 ) -> Ty {
148 let ty = match resolution {
149 TypeNs::TraitId(trait_) => {
150 let trait_ref =
151 TraitRef::from_resolved_path(db, resolver, trait_, resolved_segment, None);
152 return if remaining_segments.len() == 1 {
153 let segment = &remaining_segments[0];
154 let associated_ty = associated_type_by_name_including_super_traits(
155 db,
156 trait_ref.trait_,
157 &segment.name,
158 );
159 match associated_ty {
160 Some(associated_ty) => {
161 // FIXME handle type parameters on the segment
162 Ty::Projection(ProjectionTy {
163 associated_ty,
164 parameters: trait_ref.substs,
165 })
166 }
167 None => {
168 // FIXME: report error (associated type not found)
169 Ty::Unknown
170 }
171 }
172 } else if remaining_segments.len() > 1 {
173 // FIXME report error (ambiguous associated type)
174 Ty::Unknown
175 } else {
176 Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
177 };
178 }
179 TypeNs::GenericParam(idx) => {
180 // FIXME: maybe return name in resolution?
181 let name = resolved_segment.name.clone();
182 Ty::Param { idx, name }
183 }
184 TypeNs::SelfType(impl_id) => {
185 let impl_data = db.impl_data(impl_id);
186 let resolver = impl_id.resolver(db);
187 Ty::from_hir(db, &resolver, &impl_data.target_type)
188 }
189 TypeNs::AdtSelfType(adt) => db.ty(adt.into()),
190
191 TypeNs::AdtId(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()),
192 TypeNs::BuiltinType(it) => {
193 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
194 }
195 TypeNs::TypeAliasId(it) => {
196 Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into())
197 }
198 // FIXME: report error
199 TypeNs::EnumVariantId(_) => return Ty::Unknown,
200 };
201
202 Ty::from_type_relative_path(db, resolver, ty, remaining_segments)
203 }
204
205 pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty {
206 // Resolve the path (in type namespace)
207 if let crate::PathKind::Type(type_ref) = &path.kind {
208 let ty = Ty::from_hir(db, resolver, &type_ref);
209 let remaining_segments = &path.segments[..];
210 return Ty::from_type_relative_path(db, resolver, ty, remaining_segments);
211 }
212 let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) {
213 Some(it) => it,
214 None => return Ty::Unknown,
215 };
216 let (resolved_segment, remaining_segments) = match remaining_index {
217 None => (
218 path.segments.last().expect("resolved path has at least one element"),
219 &[] as &[PathSegment],
220 ),
221 Some(i) => (&path.segments[i - 1], &path.segments[i..]),
222 };
223 Ty::from_partly_resolved_hir_path(
224 db,
225 resolver,
226 resolution,
227 resolved_segment,
228 remaining_segments,
229 )
230 }
231
232 fn select_associated_type(
233 db: &impl HirDatabase,
234 resolver: &Resolver,
235 self_ty: Ty,
236 segment: &PathSegment,
237 ) -> Ty {
238 let param_idx = match self_ty {
239 Ty::Param { idx, .. } => idx,
240 _ => return Ty::Unknown, // Error: Ambiguous associated type
241 };
242 let def = match resolver.generic_def() {
243 Some(def) => def,
244 None => return Ty::Unknown, // this can't actually happen
245 };
246 let predicates = db.generic_predicates_for_param(def.into(), param_idx);
247 let traits_from_env = predicates.iter().filter_map(|pred| match pred {
248 GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
249 _ => None,
250 });
251 let traits = traits_from_env.flat_map(|t| all_super_traits(db, t));
252 for t in traits {
253 if let Some(associated_ty) = db.trait_data(t).associated_type_by_name(&segment.name) {
254 let substs =
255 Substs::build_for_def(db, t).push(self_ty.clone()).fill_with_unknown().build();
256 // FIXME handle type parameters on the segment
257 return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
258 }
259 }
260 Ty::Unknown
261 }
262
263 fn from_hir_path_inner(
264 db: &impl HirDatabase,
265 resolver: &Resolver,
266 segment: &PathSegment,
267 typable: TyDefId,
268 ) -> Ty {
269 let generic_def = match typable {
270 TyDefId::BuiltinType(_) => None,
271 TyDefId::AdtId(it) => Some(it.into()),
272 TyDefId::TypeAliasId(it) => Some(it.into()),
273 };
274 let substs = substs_from_path_segment(db, resolver, segment, generic_def, false);
275 db.ty(typable).subst(&substs)
276 }
277
278 /// Collect generic arguments from a path into a `Substs`. See also
279 /// `create_substs_for_ast_path` and `def_to_ty` in rustc.
280 pub(super) fn substs_from_path(
281 db: &impl HirDatabase,
282 resolver: &Resolver,
283 path: &Path,
284 // Note that we don't call `db.value_type(resolved)` here,
285 // `ValueTyDefId` is just a convenient way to pass generics and
286 // special-case enum variants
287 resolved: ValueTyDefId,
288 ) -> Substs {
289 let last = path.segments.last().expect("path should have at least one segment");
290 let (segment, generic_def) = match resolved {
291 ValueTyDefId::FunctionId(it) => (last, Some(it.into())),
292 ValueTyDefId::StructId(it) => (last, Some(it.into())),
293 ValueTyDefId::ConstId(it) => (last, Some(it.into())),
294 ValueTyDefId::StaticId(_) => (last, None),
295 ValueTyDefId::EnumVariantId(var) => {
296 // the generic args for an enum variant may be either specified
297 // on the segment referring to the enum, or on the segment
298 // referring to the variant. So `Option::<T>::None` and
299 // `Option::None::<T>` are both allowed (though the former is
300 // preferred). See also `def_ids_for_path_segments` in rustc.
301 let len = path.segments.len();
302 let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() {
303 // Option::<T>::None
304 &path.segments[len - 2]
305 } else {
306 // Option::None::<T>
307 last
308 };
309 (segment, Some(var.parent.into()))
310 }
311 };
312 substs_from_path_segment(db, resolver, segment, generic_def, false)
313 }
314}
315
316pub(super) fn substs_from_path_segment(
317 db: &impl HirDatabase,
318 resolver: &Resolver,
319 segment: &PathSegment,
320 def_generic: Option<GenericDefId>,
321 add_self_param: bool,
322) -> Substs {
323 let mut substs = Vec::new();
324 let def_generics = def_generic.map(|def| db.generic_params(def.into()));
325
326 let (parent_param_count, param_count) =
327 def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
328 substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count));
329 if add_self_param {
330 // FIXME this add_self_param argument is kind of a hack: Traits have the
331 // Self type as an implicit first type parameter, but it can't be
332 // actually provided in the type arguments
333 // (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
334 substs.push(Ty::Unknown);
335 }
336 if let Some(generic_args) = &segment.args_and_bindings {
337 // if args are provided, it should be all of them, but we can't rely on that
338 let self_param_correction = if add_self_param { 1 } else { 0 };
339 let param_count = param_count - self_param_correction;
340 for arg in generic_args.args.iter().take(param_count) {
341 match arg {
342 GenericArg::Type(type_ref) => {
343 let ty = Ty::from_hir(db, resolver, type_ref);
344 substs.push(ty);
345 }
346 }
347 }
348 }
349 // add placeholders for args that were not provided
350 let supplied_params = substs.len();
351 for _ in supplied_params..parent_param_count + param_count {
352 substs.push(Ty::Unknown);
353 }
354 assert_eq!(substs.len(), parent_param_count + param_count);
355
356 // handle defaults
357 if let Some(def_generic) = def_generic {
358 let default_substs = db.generic_defaults(def_generic.into());
359 assert_eq!(substs.len(), default_substs.len());
360
361 for (i, default_ty) in default_substs.iter().enumerate() {
362 if substs[i] == Ty::Unknown {
363 substs[i] = default_ty.clone();
364 }
365 }
366 }
367
368 Substs(substs.into())
369}
370
371impl TraitRef {
372 pub(crate) fn from_path(
373 db: &impl HirDatabase,
374 resolver: &Resolver,
375 path: &Path,
376 explicit_self_ty: Option<Ty>,
377 ) -> Option<Self> {
378 let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? {
379 TypeNs::TraitId(tr) => tr,
380 _ => return None,
381 };
382 let segment = path.segments.last().expect("path should have at least one segment");
383 Some(TraitRef::from_resolved_path(db, resolver, resolved.into(), segment, explicit_self_ty))
384 }
385
386 pub(super) fn from_resolved_path(
387 db: &impl HirDatabase,
388 resolver: &Resolver,
389 resolved: TraitId,
390 segment: &PathSegment,
391 explicit_self_ty: Option<Ty>,
392 ) -> Self {
393 let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved);
394 if let Some(self_ty) = explicit_self_ty {
395 make_mut_slice(&mut substs.0)[0] = self_ty;
396 }
397 TraitRef { trait_: resolved, substs }
398 }
399
400 pub(crate) fn from_hir(
401 db: &impl HirDatabase,
402 resolver: &Resolver,
403 type_ref: &TypeRef,
404 explicit_self_ty: Option<Ty>,
405 ) -> Option<Self> {
406 let path = match type_ref {
407 TypeRef::Path(path) => path,
408 _ => return None,
409 };
410 TraitRef::from_path(db, resolver, path, explicit_self_ty)
411 }
412
413 fn substs_from_path(
414 db: &impl HirDatabase,
415 resolver: &Resolver,
416 segment: &PathSegment,
417 resolved: TraitId,
418 ) -> Substs {
419 let has_self_param =
420 segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
421 substs_from_path_segment(db, resolver, segment, Some(resolved.into()), !has_self_param)
422 }
423
424 pub(crate) fn for_trait(db: &impl HirDatabase, trait_: TraitId) -> TraitRef {
425 let substs = Substs::identity(&db.generic_params(trait_.into()));
426 TraitRef { trait_, substs }
427 }
428
429 pub(crate) fn from_type_bound(
430 db: &impl HirDatabase,
431 resolver: &Resolver,
432 bound: &TypeBound,
433 self_ty: Ty,
434 ) -> Option<TraitRef> {
435 match bound {
436 TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)),
437 TypeBound::Error => None,
438 }
439 }
440}
441
442impl GenericPredicate {
443 pub(crate) fn from_where_predicate<'a>(
444 db: &'a impl HirDatabase,
445 resolver: &'a Resolver,
446 where_predicate: &'a WherePredicate,
447 ) -> impl Iterator<Item = GenericPredicate> + 'a {
448 let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref);
449 GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty)
450 }
451
452 pub(crate) fn from_type_bound<'a>(
453 db: &'a impl HirDatabase,
454 resolver: &'a Resolver,
455 bound: &'a TypeBound,
456 self_ty: Ty,
457 ) -> impl Iterator<Item = GenericPredicate> + 'a {
458 let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty);
459 iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
460 .chain(
461 trait_ref.into_iter().flat_map(move |tr| {
462 assoc_type_bindings_from_type_bound(db, resolver, bound, tr)
463 }),
464 )
465 }
466}
467
468fn assoc_type_bindings_from_type_bound<'a>(
469 db: &'a impl HirDatabase,
470 resolver: &'a Resolver,
471 bound: &'a TypeBound,
472 trait_ref: TraitRef,
473) -> impl Iterator<Item = GenericPredicate> + 'a {
474 let last_segment = match bound {
475 TypeBound::Path(path) => path.segments.last(),
476 TypeBound::Error => None,
477 };
478 last_segment
479 .into_iter()
480 .flat_map(|segment| segment.args_and_bindings.iter())
481 .flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
482 .map(move |(name, type_ref)| {
483 let associated_ty =
484 associated_type_by_name_including_super_traits(db, trait_ref.trait_, &name);
485 let associated_ty = match associated_ty {
486 None => return GenericPredicate::Error,
487 Some(t) => t,
488 };
489 let projection_ty =
490 ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
491 let ty = Ty::from_hir(db, resolver, type_ref);
492 let projection_predicate = ProjectionPredicate { projection_ty, ty };
493 GenericPredicate::Projection(projection_predicate)
494 })
495}
496
497/// Build the signature of a callable item (function, struct or enum variant).
498pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
499 match def {
500 CallableDef::FunctionId(f) => fn_sig_for_fn(db, f),
501 CallableDef::StructId(s) => fn_sig_for_struct_constructor(db, s),
502 CallableDef::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e),
503 }
504}
505
506/// Build the type of all specific fields of a struct or enum variant.
507pub(crate) fn field_types_query(
508 db: &impl HirDatabase,
509 variant_id: VariantId,
510) -> Arc<ArenaMap<LocalStructFieldId, Ty>> {
511 let var_data = variant_data(db, variant_id);
512 let resolver = match variant_id {
513 VariantId::StructId(it) => it.resolver(db),
514 VariantId::UnionId(it) => it.resolver(db),
515 VariantId::EnumVariantId(it) => it.parent.resolver(db),
516 };
517 let mut res = ArenaMap::default();
518 for (field_id, field_data) in var_data.fields().iter() {
519 res.insert(field_id, Ty::from_hir(db, &resolver, &field_data.type_ref))
520 }
521 Arc::new(res)
522}
523
524/// This query exists only to be used when resolving short-hand associated types
525/// like `T::Item`.
526///
527/// See the analogous query in rustc and its comment:
528/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
529/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
530/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
531/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
532pub(crate) fn generic_predicates_for_param_query(
533 db: &impl HirDatabase,
534 def: GenericDefId,
535 param_idx: u32,
536) -> Arc<[GenericPredicate]> {
537 let resolver = def.resolver(db);
538 resolver
539 .where_predicates_in_scope()
540 // we have to filter out all other predicates *first*, before attempting to lower them
541 .filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx))
542 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
543 .collect()
544}
545
546impl TraitEnvironment {
547 pub(crate) fn lower(db: &impl HirDatabase, resolver: &Resolver) -> Arc<TraitEnvironment> {
548 let predicates = resolver
549 .where_predicates_in_scope()
550 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
551 .collect::<Vec<_>>();
552
553 Arc::new(TraitEnvironment { predicates })
554 }
555}
556
557/// Resolve the where clause(s) of an item with generics.
558pub(crate) fn generic_predicates_query(
559 db: &impl HirDatabase,
560 def: GenericDefId,
561) -> Arc<[GenericPredicate]> {
562 let resolver = def.resolver(db);
563 resolver
564 .where_predicates_in_scope()
565 .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred))
566 .collect()
567}
568
569/// Resolve the default type params from generics
570pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDefId) -> Substs {
571 let resolver = def.resolver(db);
572 let generic_params = db.generic_params(def.into());
573
574 let defaults = generic_params
575 .params_including_parent()
576 .into_iter()
577 .map(|p| p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(db, &resolver, t)))
578 .collect();
579
580 Substs(defaults)
581}
582
583fn fn_sig_for_fn(db: &impl HirDatabase, def: FunctionId) -> FnSig {
584 let data = db.function_data(def);
585 let resolver = def.resolver(db);
586 let params = data.params.iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::<Vec<_>>();
587 let ret = Ty::from_hir(db, &resolver, &data.ret_type);
588 FnSig::from_params_and_return(params, ret)
589}
590
591/// Build the declared type of a function. This should not need to look at the
592/// function body.
593fn type_for_fn(db: &impl HirDatabase, def: FunctionId) -> Ty {
594 let generics = db.generic_params(def.into());
595 let substs = Substs::identity(&generics);
596 Ty::apply(TypeCtor::FnDef(def.into()), substs)
597}
598
599/// Build the declared type of a const.
600fn type_for_const(db: &impl HirDatabase, def: ConstId) -> Ty {
601 let data = db.const_data(def);
602 let resolver = def.resolver(db);
603
604 Ty::from_hir(db, &resolver, &data.type_ref)
605}
606
607/// Build the declared type of a static.
608fn type_for_static(db: &impl HirDatabase, def: StaticId) -> Ty {
609 let data = db.static_data(def);
610 let resolver = def.resolver(db);
611
612 Ty::from_hir(db, &resolver, &data.type_ref)
613}
614
615/// Build the declared type of a static.
616fn type_for_builtin(def: BuiltinType) -> Ty {
617 Ty::simple(match def {
618 BuiltinType::Char => TypeCtor::Char,
619 BuiltinType::Bool => TypeCtor::Bool,
620 BuiltinType::Str => TypeCtor::Str,
621 BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()),
622 BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()),
623 })
624}
625
626fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> FnSig {
627 let struct_data = db.struct_data(def.into());
628 let fields = struct_data.variant_data.fields();
629 let resolver = def.resolver(db);
630 let params = fields
631 .iter()
632 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
633 .collect::<Vec<_>>();
634 let ret = type_for_adt(db, def.into());
635 FnSig::from_params_and_return(params, ret)
636}
637
638/// Build the type of a tuple struct constructor.
639fn type_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> Ty {
640 let struct_data = db.struct_data(def.into());
641 if struct_data.variant_data.is_unit() {
642 return type_for_adt(db, def.into()); // Unit struct
643 }
644 let generics = db.generic_params(def.into());
645 let substs = Substs::identity(&generics);
646 Ty::apply(TypeCtor::FnDef(def.into()), substs)
647}
648
649fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> FnSig {
650 let enum_data = db.enum_data(def.parent);
651 let var_data = &enum_data.variants[def.local_id];
652 let fields = var_data.variant_data.fields();
653 let resolver = def.parent.resolver(db);
654 let params = fields
655 .iter()
656 .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref))
657 .collect::<Vec<_>>();
658 let generics = db.generic_params(def.parent.into());
659 let substs = Substs::identity(&generics);
660 let ret = type_for_adt(db, def.parent.into()).subst(&substs);
661 FnSig::from_params_and_return(params, ret)
662}
663
664/// Build the type of a tuple enum variant constructor.
665fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> Ty {
666 let enum_data = db.enum_data(def.parent);
667 let var_data = &enum_data.variants[def.local_id].variant_data;
668 if var_data.is_unit() {
669 return type_for_adt(db, def.parent.into()); // Unit variant
670 }
671 let generics = db.generic_params(def.parent.into());
672 let substs = Substs::identity(&generics);
673 Ty::apply(TypeCtor::FnDef(EnumVariantId::from(def).into()), substs)
674}
675
676fn type_for_adt(db: &impl HirDatabase, adt: AdtId) -> Ty {
677 let generics = db.generic_params(adt.into());
678 Ty::apply(TypeCtor::Adt(adt), Substs::identity(&generics))
679}
680
681fn type_for_type_alias(db: &impl HirDatabase, t: TypeAliasId) -> Ty {
682 let generics = db.generic_params(t.into());
683 let resolver = t.resolver(db);
684 let type_ref = &db.type_alias_data(t).type_ref;
685 let substs = Substs::identity(&generics);
686 let inner = Ty::from_hir(db, &resolver, type_ref.as_ref().unwrap_or(&TypeRef::Error));
687 inner.subst(&substs)
688}
689
690#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
691pub enum CallableDef {
692 FunctionId(FunctionId),
693 StructId(StructId),
694 EnumVariantId(EnumVariantId),
695}
696impl_froms!(CallableDef: FunctionId, StructId, EnumVariantId);
697
698impl CallableDef {
699 pub fn krate(self, db: &impl HirDatabase) -> CrateId {
700 match self {
701 CallableDef::FunctionId(f) => f.lookup(db).module(db).krate,
702 CallableDef::StructId(s) => s.module(db).krate,
703 CallableDef::EnumVariantId(e) => e.parent.module(db).krate,
704 }
705 }
706}
707
708impl From<CallableDef> for GenericDefId {
709 fn from(def: CallableDef) -> GenericDefId {
710 match def {
711 CallableDef::FunctionId(f) => f.into(),
712 CallableDef::StructId(s) => s.into(),
713 CallableDef::EnumVariantId(e) => e.into(),
714 }
715 }
716}
717
718#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
719pub enum TyDefId {
720 BuiltinType(BuiltinType),
721 AdtId(AdtId),
722 TypeAliasId(TypeAliasId),
723}
724impl_froms!(TyDefId: BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId);
725
726#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
727pub enum ValueTyDefId {
728 FunctionId(FunctionId),
729 StructId(StructId),
730 EnumVariantId(EnumVariantId),
731 ConstId(ConstId),
732 StaticId(StaticId),
733}
734impl_froms!(ValueTyDefId: FunctionId, StructId, EnumVariantId, ConstId, StaticId);
735
736/// Build the declared type of an item. This depends on the namespace; e.g. for
737/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
738/// the constructor function `(usize) -> Foo` which lives in the values
739/// namespace.
740pub(crate) fn ty_query(db: &impl HirDatabase, def: TyDefId) -> Ty {
741 match def {
742 TyDefId::BuiltinType(it) => type_for_builtin(it),
743 TyDefId::AdtId(it) => type_for_adt(db, it),
744 TyDefId::TypeAliasId(it) => type_for_type_alias(db, it),
745 }
746}
747pub(crate) fn value_ty_query(db: &impl HirDatabase, def: ValueTyDefId) -> Ty {
748 match def {
749 ValueTyDefId::FunctionId(it) => type_for_fn(db, it),
750 ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it),
751 ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it),
752 ValueTyDefId::ConstId(it) => type_for_const(db, it),
753 ValueTyDefId::StaticId(it) => type_for_static(db, it),
754 }
755}
diff --git a/crates/ra_hir/src/ty/method_resolution.rs b/crates/ra_hir/src/ty/method_resolution.rs
deleted file mode 100644
index 5cc249855..000000000
--- a/crates/ra_hir/src/ty/method_resolution.rs
+++ /dev/null
@@ -1,362 +0,0 @@
1//! This module is concerned with finding methods that a given type provides.
2//! For details about how this works in rustc, see the method lookup page in the
3//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
4//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
5use std::sync::Arc;
6
7use arrayvec::ArrayVec;
8use hir_def::{
9 lang_item::LangItemTarget, resolver::HasResolver, resolver::Resolver, type_ref::Mutability,
10 AssocItemId, AstItemDef, FunctionId, HasModule, ImplId, TraitId,
11};
12use hir_expand::name::Name;
13use ra_db::CrateId;
14use ra_prof::profile;
15use rustc_hash::FxHashMap;
16
17use crate::{
18 db::HirDatabase,
19 ty::primitive::{FloatBitness, Uncertain},
20 ty::{utils::all_super_traits, Ty, TypeCtor},
21};
22
23use super::{autoderef, Canonical, InEnvironment, TraitEnvironment, TraitRef};
24
25/// This is used as a key for indexing impls.
26#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
27pub enum TyFingerprint {
28 Apply(TypeCtor),
29}
30
31impl TyFingerprint {
32 /// Creates a TyFingerprint for looking up an impl. Only certain types can
33 /// have impls: if we have some `struct S`, we can have an `impl S`, but not
34 /// `impl &S`. Hence, this will return `None` for reference types and such.
35 fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
36 match ty {
37 Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
38 _ => None,
39 }
40 }
41}
42
43#[derive(Debug, PartialEq, Eq)]
44pub struct CrateImplBlocks {
45 impls: FxHashMap<TyFingerprint, Vec<ImplId>>,
46 impls_by_trait: FxHashMap<TraitId, Vec<ImplId>>,
47}
48
49impl CrateImplBlocks {
50 pub(crate) fn impls_in_crate_query(
51 db: &impl HirDatabase,
52 krate: CrateId,
53 ) -> Arc<CrateImplBlocks> {
54 let _p = profile("impls_in_crate_query");
55 let mut res =
56 CrateImplBlocks { impls: FxHashMap::default(), impls_by_trait: FxHashMap::default() };
57
58 let crate_def_map = db.crate_def_map(krate);
59 for (_module_id, module_data) in crate_def_map.modules.iter() {
60 for &impl_id in module_data.impls.iter() {
61 let impl_data = db.impl_data(impl_id);
62 let resolver = impl_id.resolver(db);
63
64 let target_ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
65
66 match &impl_data.target_trait {
67 Some(trait_ref) => {
68 if let Some(tr) =
69 TraitRef::from_hir(db, &resolver, &trait_ref, Some(target_ty))
70 {
71 res.impls_by_trait.entry(tr.trait_).or_default().push(impl_id);
72 }
73 }
74 None => {
75 if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
76 res.impls.entry(target_ty_fp).or_default().push(impl_id);
77 }
78 }
79 }
80 }
81 }
82
83 Arc::new(res)
84 }
85 pub fn lookup_impl_blocks(&self, ty: &Ty) -> impl Iterator<Item = ImplId> + '_ {
86 let fingerprint = TyFingerprint::for_impl(ty);
87 fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flatten().copied()
88 }
89
90 pub fn lookup_impl_blocks_for_trait(&self, tr: TraitId) -> impl Iterator<Item = ImplId> + '_ {
91 self.impls_by_trait.get(&tr).into_iter().flatten().copied()
92 }
93
94 pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplId> + 'a {
95 self.impls.values().chain(self.impls_by_trait.values()).flatten().copied()
96 }
97}
98
99impl Ty {
100 pub(crate) fn def_crates(
101 &self,
102 db: &impl HirDatabase,
103 cur_crate: CrateId,
104 ) -> Option<ArrayVec<[CrateId; 2]>> {
105 // Types like slice can have inherent impls in several crates, (core and alloc).
106 // The corresponding impls are marked with lang items, so we can use them to find the required crates.
107 macro_rules! lang_item_crate {
108 ($($name:expr),+ $(,)?) => {{
109 let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
110 $(
111 v.extend(db.lang_item(cur_crate, $name.into()));
112 )+
113 v
114 }};
115 }
116
117 let lang_item_targets = match self {
118 Ty::Apply(a_ty) => match a_ty.ctor {
119 TypeCtor::Adt(def_id) => {
120 return Some(std::iter::once(def_id.module(db).krate).collect())
121 }
122 TypeCtor::Bool => lang_item_crate!("bool"),
123 TypeCtor::Char => lang_item_crate!("char"),
124 TypeCtor::Float(Uncertain::Known(f)) => match f.bitness {
125 // There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
126 FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
127 FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
128 },
129 TypeCtor::Int(Uncertain::Known(i)) => lang_item_crate!(i.ty_to_string()),
130 TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
131 TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
132 TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
133 TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
134 _ => return None,
135 },
136 _ => return None,
137 };
138 let res = lang_item_targets
139 .into_iter()
140 .filter_map(|it| match it {
141 LangItemTarget::ImplBlockId(it) => Some(it),
142 _ => None,
143 })
144 .map(|it| it.module(db).krate)
145 .collect();
146 Some(res)
147 }
148}
149/// Look up the method with the given name, returning the actual autoderefed
150/// receiver type (but without autoref applied yet).
151pub(crate) fn lookup_method(
152 ty: &Canonical<Ty>,
153 db: &impl HirDatabase,
154 name: &Name,
155 resolver: &Resolver,
156) -> Option<(Ty, FunctionId)> {
157 iterate_method_candidates(ty, db, resolver, Some(name), LookupMode::MethodCall, |ty, f| match f
158 {
159 AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
160 _ => None,
161 })
162}
163
164/// Whether we're looking up a dotted method call (like `v.len()`) or a path
165/// (like `Vec::new`).
166#[derive(Copy, Clone, Debug, PartialEq, Eq)]
167pub enum LookupMode {
168 /// Looking up a method call like `v.len()`: We only consider candidates
169 /// that have a `self` parameter, and do autoderef.
170 MethodCall,
171 /// Looking up a path like `Vec::new` or `Vec::default`: We consider all
172 /// candidates including associated constants, but don't do autoderef.
173 Path,
174}
175
176// This would be nicer if it just returned an iterator, but that runs into
177// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
178// FIXME add a context type here?
179pub(crate) fn iterate_method_candidates<T>(
180 ty: &Canonical<Ty>,
181 db: &impl HirDatabase,
182 resolver: &Resolver,
183 name: Option<&Name>,
184 mode: LookupMode,
185 mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
186) -> Option<T> {
187 let krate = resolver.krate()?;
188 match mode {
189 LookupMode::MethodCall => {
190 // For method calls, rust first does any number of autoderef, and then one
191 // autoref (i.e. when the method takes &self or &mut self). We just ignore
192 // the autoref currently -- when we find a method matching the given name,
193 // we assume it fits.
194
195 // Also note that when we've got a receiver like &S, even if the method we
196 // find in the end takes &self, we still do the autoderef step (just as
197 // rustc does an autoderef and then autoref again).
198 let environment = TraitEnvironment::lower(db, resolver);
199 let ty = InEnvironment { value: ty.clone(), environment };
200 for derefed_ty in autoderef::autoderef(db, resolver.krate(), ty) {
201 if let Some(result) =
202 iterate_inherent_methods(&derefed_ty, db, name, mode, krate, &mut callback)
203 {
204 return Some(result);
205 }
206 if let Some(result) = iterate_trait_method_candidates(
207 &derefed_ty,
208 db,
209 resolver,
210 name,
211 mode,
212 &mut callback,
213 ) {
214 return Some(result);
215 }
216 }
217 }
218 LookupMode::Path => {
219 // No autoderef for path lookups
220 if let Some(result) =
221 iterate_inherent_methods(&ty, db, name, mode, krate.into(), &mut callback)
222 {
223 return Some(result);
224 }
225 if let Some(result) =
226 iterate_trait_method_candidates(&ty, db, resolver, name, mode, &mut callback)
227 {
228 return Some(result);
229 }
230 }
231 }
232 None
233}
234
235fn iterate_trait_method_candidates<T>(
236 ty: &Canonical<Ty>,
237 db: &impl HirDatabase,
238 resolver: &Resolver,
239 name: Option<&Name>,
240 mode: LookupMode,
241 mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
242) -> Option<T> {
243 let krate = resolver.krate()?;
244 // FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that)
245 let env = TraitEnvironment::lower(db, resolver);
246 // if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
247 let inherent_trait = ty.value.inherent_trait().into_iter();
248 // if we have `T: Trait` in the param env, the trait doesn't need to be in scope
249 let traits_from_env = env
250 .trait_predicates_for_self_ty(&ty.value)
251 .map(|tr| tr.trait_)
252 .flat_map(|t| all_super_traits(db, t));
253 let traits =
254 inherent_trait.chain(traits_from_env).chain(resolver.traits_in_scope(db).into_iter());
255 'traits: for t in traits {
256 let data = db.trait_data(t);
257
258 // we'll be lazy about checking whether the type implements the
259 // trait, but if we find out it doesn't, we'll skip the rest of the
260 // iteration
261 let mut known_implemented = false;
262 for (_name, item) in data.items.iter() {
263 if !is_valid_candidate(db, name, mode, (*item).into()) {
264 continue;
265 }
266 if !known_implemented {
267 let goal = generic_implements_goal(db, env.clone(), t, ty.clone());
268 if db.trait_solve(krate.into(), goal).is_none() {
269 continue 'traits;
270 }
271 }
272 known_implemented = true;
273 if let Some(result) = callback(&ty.value, (*item).into()) {
274 return Some(result);
275 }
276 }
277 }
278 None
279}
280
281fn iterate_inherent_methods<T>(
282 ty: &Canonical<Ty>,
283 db: &impl HirDatabase,
284 name: Option<&Name>,
285 mode: LookupMode,
286 krate: CrateId,
287 mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
288) -> Option<T> {
289 for krate in ty.value.def_crates(db, krate)? {
290 let impls = db.impls_in_crate(krate);
291
292 for impl_block in impls.lookup_impl_blocks(&ty.value) {
293 for &item in db.impl_data(impl_block).items.iter() {
294 if !is_valid_candidate(db, name, mode, item) {
295 continue;
296 }
297 if let Some(result) = callback(&ty.value, item.into()) {
298 return Some(result);
299 }
300 }
301 }
302 }
303 None
304}
305
306fn is_valid_candidate(
307 db: &impl HirDatabase,
308 name: Option<&Name>,
309 mode: LookupMode,
310 item: AssocItemId,
311) -> bool {
312 match item {
313 AssocItemId::FunctionId(m) => {
314 let data = db.function_data(m);
315 name.map_or(true, |name| &data.name == name)
316 && (data.has_self_param || mode == LookupMode::Path)
317 }
318 AssocItemId::ConstId(c) => {
319 let data = db.const_data(c);
320 name.map_or(true, |name| data.name.as_ref() == Some(name)) && (mode == LookupMode::Path)
321 }
322 _ => false,
323 }
324}
325
326pub(crate) fn implements_trait(
327 ty: &Canonical<Ty>,
328 db: &impl HirDatabase,
329 resolver: &Resolver,
330 krate: CrateId,
331 trait_: TraitId,
332) -> bool {
333 if ty.value.inherent_trait() == Some(trait_) {
334 // FIXME this is a bit of a hack, since Chalk should say the same thing
335 // anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
336 return true;
337 }
338 let env = TraitEnvironment::lower(db, resolver);
339 let goal = generic_implements_goal(db, env, trait_, ty.clone());
340 let solution = db.trait_solve(krate.into(), goal);
341
342 solution.is_some()
343}
344
345/// This creates Substs for a trait with the given Self type and type variables
346/// for all other parameters, to query Chalk with it.
347fn generic_implements_goal(
348 db: &impl HirDatabase,
349 env: Arc<TraitEnvironment>,
350 trait_: TraitId,
351 self_ty: Canonical<Ty>,
352) -> Canonical<InEnvironment<super::Obligation>> {
353 let num_vars = self_ty.num_vars;
354 let substs = super::Substs::build_for_def(db, trait_)
355 .push(self_ty.value)
356 .fill_with_bound_vars(num_vars as u32)
357 .build();
358 let num_vars = substs.len() - 1 + self_ty.num_vars;
359 let trait_ref = TraitRef { trait_, substs };
360 let obligation = super::Obligation::Trait(trait_ref);
361 Canonical { num_vars, value: InEnvironment::new(env, obligation) }
362}
diff --git a/crates/ra_hir/src/ty/op.rs b/crates/ra_hir/src/ty/op.rs
deleted file mode 100644
index cc6e244f4..000000000
--- a/crates/ra_hir/src/ty/op.rs
+++ /dev/null
@@ -1,50 +0,0 @@
1//! FIXME: write short doc here
2use hir_def::expr::{BinaryOp, CmpOp};
3
4use super::{InferTy, Ty, TypeCtor};
5use crate::ty::ApplicationTy;
6
7pub(super) fn binary_op_return_ty(op: BinaryOp, rhs_ty: Ty) -> Ty {
8 match op {
9 BinaryOp::LogicOp(_) | BinaryOp::CmpOp(_) => Ty::simple(TypeCtor::Bool),
10 BinaryOp::Assignment { .. } => Ty::unit(),
11 BinaryOp::ArithOp(_) => match rhs_ty {
12 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
13 TypeCtor::Int(..) | TypeCtor::Float(..) => rhs_ty,
14 _ => Ty::Unknown,
15 },
16 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => rhs_ty,
17 _ => Ty::Unknown,
18 },
19 }
20}
21
22pub(super) fn binary_op_rhs_expectation(op: BinaryOp, lhs_ty: Ty) -> Ty {
23 match op {
24 BinaryOp::LogicOp(..) => Ty::simple(TypeCtor::Bool),
25 BinaryOp::Assignment { op: None } | BinaryOp::CmpOp(CmpOp::Eq { negated: _ }) => {
26 match lhs_ty {
27 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
28 TypeCtor::Int(..)
29 | TypeCtor::Float(..)
30 | TypeCtor::Str
31 | TypeCtor::Char
32 | TypeCtor::Bool => lhs_ty,
33 _ => Ty::Unknown,
34 },
35 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => lhs_ty,
36 _ => Ty::Unknown,
37 }
38 }
39 BinaryOp::CmpOp(CmpOp::Ord { .. })
40 | BinaryOp::Assignment { op: Some(_) }
41 | BinaryOp::ArithOp(_) => match lhs_ty {
42 Ty::Apply(ApplicationTy { ctor, .. }) => match ctor {
43 TypeCtor::Int(..) | TypeCtor::Float(..) => lhs_ty,
44 _ => Ty::Unknown,
45 },
46 Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => lhs_ty,
47 _ => Ty::Unknown,
48 },
49 }
50}
diff --git a/crates/ra_hir/src/ty/primitive.rs b/crates/ra_hir/src/ty/primitive.rs
deleted file mode 100644
index 12dc96572..000000000
--- a/crates/ra_hir/src/ty/primitive.rs
+++ /dev/null
@@ -1,3 +0,0 @@
1//! FIXME: write short doc here
2
3pub use hir_ty::primitive::{FloatBitness, FloatTy, IntBitness, IntTy, Signedness, Uncertain};
diff --git a/crates/ra_hir/src/ty/tests.rs b/crates/ra_hir/src/ty/tests.rs
deleted file mode 100644
index 98eb863cb..000000000
--- a/crates/ra_hir/src/ty/tests.rs
+++ /dev/null
@@ -1,4896 +0,0 @@
1mod never_type;
2mod coercion;
3
4use std::fmt::Write;
5use std::sync::Arc;
6
7use insta::assert_snapshot;
8use ra_db::{fixture::WithFixture, salsa::Database, FilePosition, SourceDatabase};
9use ra_syntax::{
10 algo,
11 ast::{self, AstNode},
12 SyntaxKind::*,
13};
14use rustc_hash::FxHashSet;
15use test_utils::covers;
16
17use crate::{
18 expr::BodySourceMap, test_db::TestDB, ty::display::HirDisplay, ty::InferenceResult, Source,
19 SourceAnalyzer,
20};
21
22// These tests compare the inference results for all expressions in a file
23// against snapshots of the expected results using insta. Use cargo-insta to
24// update the snapshots.
25
26#[test]
27fn cfg_impl_block() {
28 let (db, pos) = TestDB::with_position(
29 r#"
30//- /main.rs crate:main deps:foo cfg:test
31use foo::S as T;
32struct S;
33
34#[cfg(test)]
35impl S {
36 fn foo1(&self) -> i32 { 0 }
37}
38
39#[cfg(not(test))]
40impl S {
41 fn foo2(&self) -> i32 { 0 }
42}
43
44fn test() {
45 let t = (S.foo1(), S.foo2(), T.foo3(), T.foo4());
46 t<|>;
47}
48
49//- /foo.rs crate:foo
50struct S;
51
52#[cfg(not(test))]
53impl S {
54 fn foo3(&self) -> i32 { 0 }
55}
56
57#[cfg(test)]
58impl S {
59 fn foo4(&self) -> i32 { 0 }
60}
61"#,
62 );
63 assert_eq!("(i32, {unknown}, i32, {unknown})", type_at_pos(&db, pos));
64}
65
66#[test]
67fn infer_await() {
68 let (db, pos) = TestDB::with_position(
69 r#"
70//- /main.rs crate:main deps:std
71
72struct IntFuture;
73
74impl Future for IntFuture {
75 type Output = u64;
76}
77
78fn test() {
79 let r = IntFuture;
80 let v = r.await;
81 v<|>;
82}
83
84//- /std.rs crate:std
85#[prelude_import] use future::*;
86mod future {
87 trait Future {
88 type Output;
89 }
90}
91
92"#,
93 );
94 assert_eq!("u64", type_at_pos(&db, pos));
95}
96
97#[test]
98fn infer_box() {
99 let (db, pos) = TestDB::with_position(
100 r#"
101//- /main.rs crate:main deps:std
102
103fn test() {
104 let x = box 1;
105 let t = (x, box x, box &1, box [1]);
106 t<|>;
107}
108
109//- /std.rs crate:std
110#[prelude_import] use prelude::*;
111mod prelude {}
112
113mod boxed {
114 pub struct Box<T: ?Sized> {
115 inner: *mut T,
116 }
117}
118
119"#,
120 );
121 assert_eq!("(Box<i32>, Box<Box<i32>>, Box<&i32>, Box<[i32;_]>)", type_at_pos(&db, pos));
122}
123
124#[test]
125fn infer_adt_self() {
126 let (db, pos) = TestDB::with_position(
127 r#"
128//- /main.rs
129enum Nat { Succ(Self), Demo(Nat), Zero }
130
131fn test() {
132 let foo: Nat = Nat::Zero;
133 if let Nat::Succ(x) = foo {
134 x<|>
135 }
136}
137
138"#,
139 );
140 assert_eq!("Nat", type_at_pos(&db, pos));
141}
142
143#[test]
144fn infer_try() {
145 let (db, pos) = TestDB::with_position(
146 r#"
147//- /main.rs crate:main deps:std
148
149fn test() {
150 let r: Result<i32, u64> = Result::Ok(1);
151 let v = r?;
152 v<|>;
153}
154
155//- /std.rs crate:std
156
157#[prelude_import] use ops::*;
158mod ops {
159 trait Try {
160 type Ok;
161 type Error;
162 }
163}
164
165#[prelude_import] use result::*;
166mod result {
167 enum Result<O, E> {
168 Ok(O),
169 Err(E)
170 }
171
172 impl<O, E> crate::ops::Try for Result<O, E> {
173 type Ok = O;
174 type Error = E;
175 }
176}
177
178"#,
179 );
180 assert_eq!("i32", type_at_pos(&db, pos));
181}
182
183#[test]
184fn infer_for_loop() {
185 let (db, pos) = TestDB::with_position(
186 r#"
187//- /main.rs crate:main deps:std
188
189use std::collections::Vec;
190
191fn test() {
192 let v = Vec::new();
193 v.push("foo");
194 for x in v {
195 x<|>;
196 }
197}
198
199//- /std.rs crate:std
200
201#[prelude_import] use iter::*;
202mod iter {
203 trait IntoIterator {
204 type Item;
205 }
206}
207
208mod collections {
209 struct Vec<T> {}
210 impl<T> Vec<T> {
211 fn new() -> Self { Vec {} }
212 fn push(&mut self, t: T) { }
213 }
214
215 impl<T> crate::iter::IntoIterator for Vec<T> {
216 type Item=T;
217 }
218}
219"#,
220 );
221 assert_eq!("&str", type_at_pos(&db, pos));
222}
223
224#[test]
225fn infer_while_let() {
226 let (db, pos) = TestDB::with_position(
227 r#"
228//- /main.rs
229enum Option<T> { Some(T), None }
230
231fn test() {
232 let foo: Option<f32> = None;
233 while let Option::Some(x) = foo {
234 <|>x
235 }
236}
237
238"#,
239 );
240 assert_eq!("f32", type_at_pos(&db, pos));
241}
242
243#[test]
244fn infer_basics() {
245 assert_snapshot!(
246 infer(r#"
247fn test(a: u32, b: isize, c: !, d: &str) {
248 a;
249 b;
250 c;
251 d;
252 1usize;
253 1isize;
254 "test";
255 1.0f32;
256}"#),
257 @r###"
258 [9; 10) 'a': u32
259 [17; 18) 'b': isize
260 [27; 28) 'c': !
261 [33; 34) 'd': &str
262 [42; 121) '{ ...f32; }': !
263 [48; 49) 'a': u32
264 [55; 56) 'b': isize
265 [62; 63) 'c': !
266 [69; 70) 'd': &str
267 [76; 82) '1usize': usize
268 [88; 94) '1isize': isize
269 [100; 106) '"test"': &str
270 [112; 118) '1.0f32': f32
271 "###
272 );
273}
274
275#[test]
276fn infer_let() {
277 assert_snapshot!(
278 infer(r#"
279fn test() {
280 let a = 1isize;
281 let b: usize = 1;
282 let c = b;
283 let d: u32;
284 let e;
285 let f: i32 = e;
286}
287"#),
288 @r###"
289 [11; 118) '{ ...= e; }': ()
290 [21; 22) 'a': isize
291 [25; 31) '1isize': isize
292 [41; 42) 'b': usize
293 [52; 53) '1': usize
294 [63; 64) 'c': usize
295 [67; 68) 'b': usize
296 [78; 79) 'd': u32
297 [94; 95) 'e': i32
298 [105; 106) 'f': i32
299 [114; 115) 'e': i32
300 "###
301 );
302}
303
304#[test]
305fn infer_paths() {
306 assert_snapshot!(
307 infer(r#"
308fn a() -> u32 { 1 }
309
310mod b {
311 fn c() -> u32 { 1 }
312}
313
314fn test() {
315 a();
316 b::c();
317}
318"#),
319 @r###"
320 [15; 20) '{ 1 }': u32
321 [17; 18) '1': u32
322 [48; 53) '{ 1 }': u32
323 [50; 51) '1': u32
324 [67; 91) '{ ...c(); }': ()
325 [73; 74) 'a': fn a() -> u32
326 [73; 76) 'a()': u32
327 [82; 86) 'b::c': fn c() -> u32
328 [82; 88) 'b::c()': u32
329 "###
330 );
331}
332
333#[test]
334fn infer_path_type() {
335 assert_snapshot!(
336 infer(r#"
337struct S;
338
339impl S {
340 fn foo() -> i32 { 1 }
341}
342
343fn test() {
344 S::foo();
345 <S>::foo();
346}
347"#),
348 @r###"
349 [41; 46) '{ 1 }': i32
350 [43; 44) '1': i32
351 [60; 93) '{ ...o(); }': ()
352 [66; 72) 'S::foo': fn foo() -> i32
353 [66; 74) 'S::foo()': i32
354 [80; 88) '<S>::foo': fn foo() -> i32
355 [80; 90) '<S>::foo()': i32
356 "###
357 );
358}
359
360#[test]
361fn infer_slice_method() {
362 assert_snapshot!(
363 infer(r#"
364#[lang = "slice"]
365impl<T> [T] {
366 fn foo(&self) -> T {
367 loop {}
368 }
369}
370
371#[lang = "slice_alloc"]
372impl<T> [T] {}
373
374fn test() {
375 <[_]>::foo(b"foo");
376}
377"#),
378 @r###"
379 [45; 49) 'self': &[T]
380 [56; 79) '{ ... }': T
381 [66; 73) 'loop {}': !
382 [71; 73) '{}': ()
383 [133; 160) '{ ...o"); }': ()
384 [139; 149) '<[_]>::foo': fn foo<u8>(&[T]) -> T
385 [139; 157) '<[_]>:..."foo")': u8
386 [150; 156) 'b"foo"': &[u8]
387 "###
388 );
389}
390
391#[test]
392fn infer_struct() {
393 assert_snapshot!(
394 infer(r#"
395struct A {
396 b: B,
397 c: C,
398}
399struct B;
400struct C(usize);
401
402fn test() {
403 let c = C(1);
404 B;
405 let a: A = A { b: B, c: C(1) };
406 a.b;
407 a.c;
408}
409"#),
410 @r###"
411 [72; 154) '{ ...a.c; }': ()
412 [82; 83) 'c': C
413 [86; 87) 'C': C(usize) -> C
414 [86; 90) 'C(1)': C
415 [88; 89) '1': usize
416 [96; 97) 'B': B
417 [107; 108) 'a': A
418 [114; 133) 'A { b:...C(1) }': A
419 [121; 122) 'B': B
420 [127; 128) 'C': C(usize) -> C
421 [127; 131) 'C(1)': C
422 [129; 130) '1': usize
423 [139; 140) 'a': A
424 [139; 142) 'a.b': B
425 [148; 149) 'a': A
426 [148; 151) 'a.c': C
427 "###
428 );
429}
430
431#[test]
432fn infer_enum() {
433 assert_snapshot!(
434 infer(r#"
435enum E {
436 V1 { field: u32 },
437 V2
438}
439fn test() {
440 E::V1 { field: 1 };
441 E::V2;
442}"#),
443 @r###"
444 [48; 82) '{ E:...:V2; }': ()
445 [52; 70) 'E::V1 ...d: 1 }': E
446 [67; 68) '1': u32
447 [74; 79) 'E::V2': E
448 "###
449 );
450}
451
452#[test]
453fn infer_refs() {
454 assert_snapshot!(
455 infer(r#"
456fn test(a: &u32, b: &mut u32, c: *const u32, d: *mut u32) {
457 a;
458 *a;
459 &a;
460 &mut a;
461 b;
462 *b;
463 &b;
464 c;
465 *c;
466 d;
467 *d;
468}
469"#),
470 @r###"
471 [9; 10) 'a': &u32
472 [18; 19) 'b': &mut u32
473 [31; 32) 'c': *const u32
474 [46; 47) 'd': *mut u32
475 [59; 150) '{ ... *d; }': ()
476 [65; 66) 'a': &u32
477 [72; 74) '*a': u32
478 [73; 74) 'a': &u32
479 [80; 82) '&a': &&u32
480 [81; 82) 'a': &u32
481 [88; 94) '&mut a': &mut &u32
482 [93; 94) 'a': &u32
483 [100; 101) 'b': &mut u32
484 [107; 109) '*b': u32
485 [108; 109) 'b': &mut u32
486 [115; 117) '&b': &&mut u32
487 [116; 117) 'b': &mut u32
488 [123; 124) 'c': *const u32
489 [130; 132) '*c': u32
490 [131; 132) 'c': *const u32
491 [138; 139) 'd': *mut u32
492 [145; 147) '*d': u32
493 [146; 147) 'd': *mut u32
494 "###
495 );
496}
497
498#[test]
499fn infer_literals() {
500 assert_snapshot!(
501 infer(r##"
502fn test() {
503 5i32;
504 5f32;
505 5f64;
506 "hello";
507 b"bytes";
508 'c';
509 b'b';
510 3.14;
511 5000;
512 false;
513 true;
514 r#"
515 //! doc
516 // non-doc
517 mod foo {}
518 "#;
519 br#"yolo"#;
520}
521"##),
522 @r###"
523 [11; 221) '{ ...o"#; }': ()
524 [17; 21) '5i32': i32
525 [27; 31) '5f32': f32
526 [37; 41) '5f64': f64
527 [47; 54) '"hello"': &str
528 [60; 68) 'b"bytes"': &[u8]
529 [74; 77) ''c'': char
530 [83; 87) 'b'b'': u8
531 [93; 97) '3.14': f64
532 [103; 107) '5000': i32
533 [113; 118) 'false': bool
534 [124; 128) 'true': bool
535 [134; 202) 'r#" ... "#': &str
536 [208; 218) 'br#"yolo"#': &[u8]
537 "###
538 );
539}
540
541#[test]
542fn infer_unary_op() {
543 assert_snapshot!(
544 infer(r#"
545enum SomeType {}
546
547fn test(x: SomeType) {
548 let b = false;
549 let c = !b;
550 let a = 100;
551 let d: i128 = -a;
552 let e = -100;
553 let f = !!!true;
554 let g = !42;
555 let h = !10u32;
556 let j = !a;
557 -3.14;
558 !3;
559 -x;
560 !x;
561 -"hello";
562 !"hello";
563}
564"#),
565 @r###"
566 [27; 28) 'x': SomeType
567 [40; 272) '{ ...lo"; }': ()
568 [50; 51) 'b': bool
569 [54; 59) 'false': bool
570 [69; 70) 'c': bool
571 [73; 75) '!b': bool
572 [74; 75) 'b': bool
573 [85; 86) 'a': i128
574 [89; 92) '100': i128
575 [102; 103) 'd': i128
576 [112; 114) '-a': i128
577 [113; 114) 'a': i128
578 [124; 125) 'e': i32
579 [128; 132) '-100': i32
580 [129; 132) '100': i32
581 [142; 143) 'f': bool
582 [146; 153) '!!!true': bool
583 [147; 153) '!!true': bool
584 [148; 153) '!true': bool
585 [149; 153) 'true': bool
586 [163; 164) 'g': i32
587 [167; 170) '!42': i32
588 [168; 170) '42': i32
589 [180; 181) 'h': u32
590 [184; 190) '!10u32': u32
591 [185; 190) '10u32': u32
592 [200; 201) 'j': i128
593 [204; 206) '!a': i128
594 [205; 206) 'a': i128
595 [212; 217) '-3.14': f64
596 [213; 217) '3.14': f64
597 [223; 225) '!3': i32
598 [224; 225) '3': i32
599 [231; 233) '-x': {unknown}
600 [232; 233) 'x': SomeType
601 [239; 241) '!x': {unknown}
602 [240; 241) 'x': SomeType
603 [247; 255) '-"hello"': {unknown}
604 [248; 255) '"hello"': &str
605 [261; 269) '!"hello"': {unknown}
606 [262; 269) '"hello"': &str
607 "###
608 );
609}
610
611#[test]
612fn infer_backwards() {
613 assert_snapshot!(
614 infer(r#"
615fn takes_u32(x: u32) {}
616
617struct S { i32_field: i32 }
618
619fn test() -> &mut &f64 {
620 let a = unknown_function();
621 takes_u32(a);
622 let b = unknown_function();
623 S { i32_field: b };
624 let c = unknown_function();
625 &mut &c
626}
627"#),
628 @r###"
629 [14; 15) 'x': u32
630 [22; 24) '{}': ()
631 [78; 231) '{ ...t &c }': &mut &f64
632 [88; 89) 'a': u32
633 [92; 108) 'unknow...nction': {unknown}
634 [92; 110) 'unknow...tion()': u32
635 [116; 125) 'takes_u32': fn takes_u32(u32) -> ()
636 [116; 128) 'takes_u32(a)': ()
637 [126; 127) 'a': u32
638 [138; 139) 'b': i32
639 [142; 158) 'unknow...nction': {unknown}
640 [142; 160) 'unknow...tion()': i32
641 [166; 184) 'S { i3...d: b }': S
642 [181; 182) 'b': i32
643 [194; 195) 'c': f64
644 [198; 214) 'unknow...nction': {unknown}
645 [198; 216) 'unknow...tion()': f64
646 [222; 229) '&mut &c': &mut &f64
647 [227; 229) '&c': &f64
648 [228; 229) 'c': f64
649 "###
650 );
651}
652
653#[test]
654fn infer_self() {
655 assert_snapshot!(
656 infer(r#"
657struct S;
658
659impl S {
660 fn test(&self) {
661 self;
662 }
663 fn test2(self: &Self) {
664 self;
665 }
666 fn test3() -> Self {
667 S {}
668 }
669 fn test4() -> Self {
670 Self {}
671 }
672}
673"#),
674 @r###"
675 [34; 38) 'self': &S
676 [40; 61) '{ ... }': ()
677 [50; 54) 'self': &S
678 [75; 79) 'self': &S
679 [88; 109) '{ ... }': ()
680 [98; 102) 'self': &S
681 [133; 153) '{ ... }': S
682 [143; 147) 'S {}': S
683 [177; 200) '{ ... }': S
684 [187; 194) 'Self {}': S
685 "###
686 );
687}
688
689#[test]
690fn infer_binary_op() {
691 assert_snapshot!(
692 infer(r#"
693fn f(x: bool) -> i32 {
694 0i32
695}
696
697fn test() -> bool {
698 let x = a && b;
699 let y = true || false;
700 let z = x == y;
701 let t = x != y;
702 let minus_forty: isize = -40isize;
703 let h = minus_forty <= CONST_2;
704 let c = f(z || y) + 5;
705 let d = b;
706 let g = minus_forty ^= i;
707 let ten: usize = 10;
708 let ten_is_eleven = ten == some_num;
709
710 ten < 3
711}
712"#),
713 @r###"
714 [6; 7) 'x': bool
715 [22; 34) '{ 0i32 }': i32
716 [28; 32) '0i32': i32
717 [54; 370) '{ ... < 3 }': bool
718 [64; 65) 'x': bool
719 [68; 69) 'a': bool
720 [68; 74) 'a && b': bool
721 [73; 74) 'b': bool
722 [84; 85) 'y': bool
723 [88; 92) 'true': bool
724 [88; 101) 'true || false': bool
725 [96; 101) 'false': bool
726 [111; 112) 'z': bool
727 [115; 116) 'x': bool
728 [115; 121) 'x == y': bool
729 [120; 121) 'y': bool
730 [131; 132) 't': bool
731 [135; 136) 'x': bool
732 [135; 141) 'x != y': bool
733 [140; 141) 'y': bool
734 [151; 162) 'minus_forty': isize
735 [172; 180) '-40isize': isize
736 [173; 180) '40isize': isize
737 [190; 191) 'h': bool
738 [194; 205) 'minus_forty': isize
739 [194; 216) 'minus_...ONST_2': bool
740 [209; 216) 'CONST_2': isize
741 [226; 227) 'c': i32
742 [230; 231) 'f': fn f(bool) -> i32
743 [230; 239) 'f(z || y)': i32
744 [230; 243) 'f(z || y) + 5': i32
745 [232; 233) 'z': bool
746 [232; 238) 'z || y': bool
747 [237; 238) 'y': bool
748 [242; 243) '5': i32
749 [253; 254) 'd': {unknown}
750 [257; 258) 'b': {unknown}
751 [268; 269) 'g': ()
752 [272; 283) 'minus_forty': isize
753 [272; 288) 'minus_...y ^= i': ()
754 [287; 288) 'i': isize
755 [298; 301) 'ten': usize
756 [311; 313) '10': usize
757 [323; 336) 'ten_is_eleven': bool
758 [339; 342) 'ten': usize
759 [339; 354) 'ten == some_num': bool
760 [346; 354) 'some_num': usize
761 [361; 364) 'ten': usize
762 [361; 368) 'ten < 3': bool
763 [367; 368) '3': usize
764 "###
765 );
766}
767
768#[test]
769fn infer_field_autoderef() {
770 assert_snapshot!(
771 infer(r#"
772struct A {
773 b: B,
774}
775struct B;
776
777fn test1(a: A) {
778 let a1 = a;
779 a1.b;
780 let a2 = &a;
781 a2.b;
782 let a3 = &mut a;
783 a3.b;
784 let a4 = &&&&&&&a;
785 a4.b;
786 let a5 = &mut &&mut &&mut a;
787 a5.b;
788}
789
790fn test2(a1: *const A, a2: *mut A) {
791 a1.b;
792 a2.b;
793}
794"#),
795 @r###"
796 [44; 45) 'a': A
797 [50; 213) '{ ...5.b; }': ()
798 [60; 62) 'a1': A
799 [65; 66) 'a': A
800 [72; 74) 'a1': A
801 [72; 76) 'a1.b': B
802 [86; 88) 'a2': &A
803 [91; 93) '&a': &A
804 [92; 93) 'a': A
805 [99; 101) 'a2': &A
806 [99; 103) 'a2.b': B
807 [113; 115) 'a3': &mut A
808 [118; 124) '&mut a': &mut A
809 [123; 124) 'a': A
810 [130; 132) 'a3': &mut A
811 [130; 134) 'a3.b': B
812 [144; 146) 'a4': &&&&&&&A
813 [149; 157) '&&&&&&&a': &&&&&&&A
814 [150; 157) '&&&&&&a': &&&&&&A
815 [151; 157) '&&&&&a': &&&&&A
816 [152; 157) '&&&&a': &&&&A
817 [153; 157) '&&&a': &&&A
818 [154; 157) '&&a': &&A
819 [155; 157) '&a': &A
820 [156; 157) 'a': A
821 [163; 165) 'a4': &&&&&&&A
822 [163; 167) 'a4.b': B
823 [177; 179) 'a5': &mut &&mut &&mut A
824 [182; 200) '&mut &...&mut a': &mut &&mut &&mut A
825 [187; 200) '&&mut &&mut a': &&mut &&mut A
826 [188; 200) '&mut &&mut a': &mut &&mut A
827 [193; 200) '&&mut a': &&mut A
828 [194; 200) '&mut a': &mut A
829 [199; 200) 'a': A
830 [206; 208) 'a5': &mut &&mut &&mut A
831 [206; 210) 'a5.b': B
832 [224; 226) 'a1': *const A
833 [238; 240) 'a2': *mut A
834 [250; 273) '{ ...2.b; }': ()
835 [256; 258) 'a1': *const A
836 [256; 260) 'a1.b': B
837 [266; 268) 'a2': *mut A
838 [266; 270) 'a2.b': B
839 "###
840 );
841}
842
843#[test]
844fn infer_argument_autoderef() {
845 assert_snapshot!(
846 infer(r#"
847#[lang = "deref"]
848pub trait Deref {
849 type Target;
850 fn deref(&self) -> &Self::Target;
851}
852
853struct A<T>(T);
854
855impl<T> A<T> {
856 fn foo(&self) -> &T {
857 &self.0
858 }
859}
860
861struct B<T>(T);
862
863impl<T> Deref for B<T> {
864 type Target = T;
865 fn deref(&self) -> &Self::Target {
866 &self.0
867 }
868}
869
870fn test() {
871 let t = A::foo(&&B(B(A(42))));
872}
873"#),
874 @r###"
875 [68; 72) 'self': &Self
876 [139; 143) 'self': &A<T>
877 [151; 174) '{ ... }': &T
878 [161; 168) '&self.0': &T
879 [162; 166) 'self': &A<T>
880 [162; 168) 'self.0': T
881 [255; 259) 'self': &B<T>
882 [278; 301) '{ ... }': &T
883 [288; 295) '&self.0': &T
884 [289; 293) 'self': &B<T>
885 [289; 295) 'self.0': T
886 [315; 353) '{ ...))); }': ()
887 [325; 326) 't': &i32
888 [329; 335) 'A::foo': fn foo<i32>(&A<T>) -> &T
889 [329; 350) 'A::foo...42))))': &i32
890 [336; 349) '&&B(B(A(42)))': &&B<B<A<i32>>>
891 [337; 349) '&B(B(A(42)))': &B<B<A<i32>>>
892 [338; 339) 'B': B<B<A<i32>>>(T) -> B<T>
893 [338; 349) 'B(B(A(42)))': B<B<A<i32>>>
894 [340; 341) 'B': B<A<i32>>(T) -> B<T>
895 [340; 348) 'B(A(42))': B<A<i32>>
896 [342; 343) 'A': A<i32>(T) -> A<T>
897 [342; 347) 'A(42)': A<i32>
898 [344; 346) '42': i32
899 "###
900 );
901}
902
903#[test]
904fn infer_method_argument_autoderef() {
905 assert_snapshot!(
906 infer(r#"
907#[lang = "deref"]
908pub trait Deref {
909 type Target;
910 fn deref(&self) -> &Self::Target;
911}
912
913struct A<T>(*mut T);
914
915impl<T> A<T> {
916 fn foo(&self, x: &A<T>) -> &T {
917 &*x.0
918 }
919}
920
921struct B<T>(T);
922
923impl<T> Deref for B<T> {
924 type Target = T;
925 fn deref(&self) -> &Self::Target {
926 &self.0
927 }
928}
929
930fn test(a: A<i32>) {
931 let t = A(0 as *mut _).foo(&&B(B(a)));
932}
933"#),
934 @r###"
935 [68; 72) 'self': &Self
936 [144; 148) 'self': &A<T>
937 [150; 151) 'x': &A<T>
938 [166; 187) '{ ... }': &T
939 [176; 181) '&*x.0': &T
940 [177; 181) '*x.0': T
941 [178; 179) 'x': &A<T>
942 [178; 181) 'x.0': *mut T
943 [268; 272) 'self': &B<T>
944 [291; 314) '{ ... }': &T
945 [301; 308) '&self.0': &T
946 [302; 306) 'self': &B<T>
947 [302; 308) 'self.0': T
948 [326; 327) 'a': A<i32>
949 [337; 383) '{ ...))); }': ()
950 [347; 348) 't': &i32
951 [351; 352) 'A': A<i32>(*mut T) -> A<T>
952 [351; 365) 'A(0 as *mut _)': A<i32>
953 [351; 380) 'A(0 as...B(a)))': &i32
954 [353; 354) '0': i32
955 [353; 364) '0 as *mut _': *mut i32
956 [370; 379) '&&B(B(a))': &&B<B<A<i32>>>
957 [371; 379) '&B(B(a))': &B<B<A<i32>>>
958 [372; 373) 'B': B<B<A<i32>>>(T) -> B<T>
959 [372; 379) 'B(B(a))': B<B<A<i32>>>
960 [374; 375) 'B': B<A<i32>>(T) -> B<T>
961 [374; 378) 'B(a)': B<A<i32>>
962 [376; 377) 'a': A<i32>
963 "###
964 );
965}
966
967#[test]
968fn bug_484() {
969 assert_snapshot!(
970 infer(r#"
971fn test() {
972 let x = if true {};
973}
974"#),
975 @r###"
976 [11; 37) '{ l... {}; }': ()
977 [20; 21) 'x': ()
978 [24; 34) 'if true {}': ()
979 [27; 31) 'true': bool
980 [32; 34) '{}': ()
981 "###
982 );
983}
984
985#[test]
986fn infer_in_elseif() {
987 assert_snapshot!(
988 infer(r#"
989struct Foo { field: i32 }
990fn main(foo: Foo) {
991 if true {
992
993 } else if false {
994 foo.field
995 }
996}
997"#),
998 @r###"
999 [35; 38) 'foo': Foo
1000 [45; 109) '{ ... } }': ()
1001 [51; 107) 'if tru... }': ()
1002 [54; 58) 'true': bool
1003 [59; 67) '{ }': ()
1004 [73; 107) 'if fal... }': ()
1005 [76; 81) 'false': bool
1006 [82; 107) '{ ... }': i32
1007 [92; 95) 'foo': Foo
1008 [92; 101) 'foo.field': i32
1009 "###
1010 )
1011}
1012
1013#[test]
1014fn infer_if_match_with_return() {
1015 assert_snapshot!(
1016 infer(r#"
1017fn foo() {
1018 let _x1 = if true {
1019 1
1020 } else {
1021 return;
1022 };
1023 let _x2 = if true {
1024 2
1025 } else {
1026 return
1027 };
1028 let _x3 = match true {
1029 true => 3,
1030 _ => {
1031 return;
1032 }
1033 };
1034 let _x4 = match true {
1035 true => 4,
1036 _ => return
1037 };
1038}"#),
1039 @r###"
1040 [10; 323) '{ ... }; }': ()
1041 [20; 23) '_x1': i32
1042 [26; 80) 'if tru... }': i32
1043 [29; 33) 'true': bool
1044 [34; 51) '{ ... }': i32
1045 [44; 45) '1': i32
1046 [57; 80) '{ ... }': !
1047 [67; 73) 'return': !
1048 [90; 93) '_x2': i32
1049 [96; 149) 'if tru... }': i32
1050 [99; 103) 'true': bool
1051 [104; 121) '{ ... }': i32
1052 [114; 115) '2': i32
1053 [127; 149) '{ ... }': !
1054 [137; 143) 'return': !
1055 [159; 162) '_x3': i32
1056 [165; 247) 'match ... }': i32
1057 [171; 175) 'true': bool
1058 [186; 190) 'true': bool
1059 [194; 195) '3': i32
1060 [205; 206) '_': bool
1061 [210; 241) '{ ... }': !
1062 [224; 230) 'return': !
1063 [257; 260) '_x4': i32
1064 [263; 320) 'match ... }': i32
1065 [269; 273) 'true': bool
1066 [284; 288) 'true': bool
1067 [292; 293) '4': i32
1068 [303; 304) '_': bool
1069 [308; 314) 'return': !
1070 "###
1071 )
1072}
1073
1074#[test]
1075fn infer_inherent_method() {
1076 assert_snapshot!(
1077 infer(r#"
1078struct A;
1079
1080impl A {
1081 fn foo(self, x: u32) -> i32 {}
1082}
1083
1084mod b {
1085 impl super::A {
1086 fn bar(&self, x: u64) -> i64 {}
1087 }
1088}
1089
1090fn test(a: A) {
1091 a.foo(1);
1092 (&a).bar(1);
1093 a.bar(1);
1094}
1095"#),
1096 @r###"
1097 [32; 36) 'self': A
1098 [38; 39) 'x': u32
1099 [53; 55) '{}': ()
1100 [103; 107) 'self': &A
1101 [109; 110) 'x': u64
1102 [124; 126) '{}': ()
1103 [144; 145) 'a': A
1104 [150; 198) '{ ...(1); }': ()
1105 [156; 157) 'a': A
1106 [156; 164) 'a.foo(1)': i32
1107 [162; 163) '1': u32
1108 [170; 181) '(&a).bar(1)': i64
1109 [171; 173) '&a': &A
1110 [172; 173) 'a': A
1111 [179; 180) '1': u64
1112 [187; 188) 'a': A
1113 [187; 195) 'a.bar(1)': i64
1114 [193; 194) '1': u64
1115 "###
1116 );
1117}
1118
1119#[test]
1120fn infer_inherent_method_str() {
1121 assert_snapshot!(
1122 infer(r#"
1123#[lang = "str"]
1124impl str {
1125 fn foo(&self) -> i32 {}
1126}
1127
1128fn test() {
1129 "foo".foo();
1130}
1131"#),
1132 @r###"
1133 [40; 44) 'self': &str
1134 [53; 55) '{}': ()
1135 [69; 89) '{ ...o(); }': ()
1136 [75; 80) '"foo"': &str
1137 [75; 86) '"foo".foo()': i32
1138 "###
1139 );
1140}
1141
1142#[test]
1143fn infer_tuple() {
1144 assert_snapshot!(
1145 infer(r#"
1146fn test(x: &str, y: isize) {
1147 let a: (u32, &str) = (1, "a");
1148 let b = (a, x);
1149 let c = (y, x);
1150 let d = (c, x);
1151 let e = (1, "e");
1152 let f = (e, "d");
1153}
1154"#),
1155 @r###"
1156 [9; 10) 'x': &str
1157 [18; 19) 'y': isize
1158 [28; 170) '{ ...d"); }': ()
1159 [38; 39) 'a': (u32, &str)
1160 [55; 63) '(1, "a")': (u32, &str)
1161 [56; 57) '1': u32
1162 [59; 62) '"a"': &str
1163 [73; 74) 'b': ((u32, &str), &str)
1164 [77; 83) '(a, x)': ((u32, &str), &str)
1165 [78; 79) 'a': (u32, &str)
1166 [81; 82) 'x': &str
1167 [93; 94) 'c': (isize, &str)
1168 [97; 103) '(y, x)': (isize, &str)
1169 [98; 99) 'y': isize
1170 [101; 102) 'x': &str
1171 [113; 114) 'd': ((isize, &str), &str)
1172 [117; 123) '(c, x)': ((isize, &str), &str)
1173 [118; 119) 'c': (isize, &str)
1174 [121; 122) 'x': &str
1175 [133; 134) 'e': (i32, &str)
1176 [137; 145) '(1, "e")': (i32, &str)
1177 [138; 139) '1': i32
1178 [141; 144) '"e"': &str
1179 [155; 156) 'f': ((i32, &str), &str)
1180 [159; 167) '(e, "d")': ((i32, &str), &str)
1181 [160; 161) 'e': (i32, &str)
1182 [163; 166) '"d"': &str
1183 "###
1184 );
1185}
1186
1187#[test]
1188fn infer_array() {
1189 assert_snapshot!(
1190 infer(r#"
1191fn test(x: &str, y: isize) {
1192 let a = [x];
1193 let b = [a, a];
1194 let c = [b, b];
1195
1196 let d = [y, 1, 2, 3];
1197 let d = [1, y, 2, 3];
1198 let e = [y];
1199 let f = [d, d];
1200 let g = [e, e];
1201
1202 let h = [1, 2];
1203 let i = ["a", "b"];
1204
1205 let b = [a, ["b"]];
1206 let x: [u8; 0] = [];
1207}
1208"#),
1209 @r###"
1210 [9; 10) 'x': &str
1211 [18; 19) 'y': isize
1212 [28; 293) '{ ... []; }': ()
1213 [38; 39) 'a': [&str;_]
1214 [42; 45) '[x]': [&str;_]
1215 [43; 44) 'x': &str
1216 [55; 56) 'b': [[&str;_];_]
1217 [59; 65) '[a, a]': [[&str;_];_]
1218 [60; 61) 'a': [&str;_]
1219 [63; 64) 'a': [&str;_]
1220 [75; 76) 'c': [[[&str;_];_];_]
1221 [79; 85) '[b, b]': [[[&str;_];_];_]
1222 [80; 81) 'b': [[&str;_];_]
1223 [83; 84) 'b': [[&str;_];_]
1224 [96; 97) 'd': [isize;_]
1225 [100; 112) '[y, 1, 2, 3]': [isize;_]
1226 [101; 102) 'y': isize
1227 [104; 105) '1': isize
1228 [107; 108) '2': isize
1229 [110; 111) '3': isize
1230 [122; 123) 'd': [isize;_]
1231 [126; 138) '[1, y, 2, 3]': [isize;_]
1232 [127; 128) '1': isize
1233 [130; 131) 'y': isize
1234 [133; 134) '2': isize
1235 [136; 137) '3': isize
1236 [148; 149) 'e': [isize;_]
1237 [152; 155) '[y]': [isize;_]
1238 [153; 154) 'y': isize
1239 [165; 166) 'f': [[isize;_];_]
1240 [169; 175) '[d, d]': [[isize;_];_]
1241 [170; 171) 'd': [isize;_]
1242 [173; 174) 'd': [isize;_]
1243 [185; 186) 'g': [[isize;_];_]
1244 [189; 195) '[e, e]': [[isize;_];_]
1245 [190; 191) 'e': [isize;_]
1246 [193; 194) 'e': [isize;_]
1247 [206; 207) 'h': [i32;_]
1248 [210; 216) '[1, 2]': [i32;_]
1249 [211; 212) '1': i32
1250 [214; 215) '2': i32
1251 [226; 227) 'i': [&str;_]
1252 [230; 240) '["a", "b"]': [&str;_]
1253 [231; 234) '"a"': &str
1254 [236; 239) '"b"': &str
1255 [251; 252) 'b': [[&str;_];_]
1256 [255; 265) '[a, ["b"]]': [[&str;_];_]
1257 [256; 257) 'a': [&str;_]
1258 [259; 264) '["b"]': [&str;_]
1259 [260; 263) '"b"': &str
1260 [275; 276) 'x': [u8;_]
1261 [288; 290) '[]': [u8;_]
1262 "###
1263 );
1264}
1265
1266#[test]
1267fn infer_pattern() {
1268 assert_snapshot!(
1269 infer(r#"
1270fn test(x: &i32) {
1271 let y = x;
1272 let &z = x;
1273 let a = z;
1274 let (c, d) = (1, "hello");
1275
1276 for (e, f) in some_iter {
1277 let g = e;
1278 }
1279
1280 if let [val] = opt {
1281 let h = val;
1282 }
1283
1284 let lambda = |a: u64, b, c: i32| { a + b; c };
1285
1286 let ref ref_to_x = x;
1287 let mut mut_x = x;
1288 let ref mut mut_ref_to_x = x;
1289 let k = mut_ref_to_x;
1290}
1291"#),
1292 @r###"
1293 [9; 10) 'x': &i32
1294 [18; 369) '{ ...o_x; }': ()
1295 [28; 29) 'y': &i32
1296 [32; 33) 'x': &i32
1297 [43; 45) '&z': &i32
1298 [44; 45) 'z': i32
1299 [48; 49) 'x': &i32
1300 [59; 60) 'a': i32
1301 [63; 64) 'z': i32
1302 [74; 80) '(c, d)': (i32, &str)
1303 [75; 76) 'c': i32
1304 [78; 79) 'd': &str
1305 [83; 95) '(1, "hello")': (i32, &str)
1306 [84; 85) '1': i32
1307 [87; 94) '"hello"': &str
1308 [102; 152) 'for (e... }': ()
1309 [106; 112) '(e, f)': ({unknown}, {unknown})
1310 [107; 108) 'e': {unknown}
1311 [110; 111) 'f': {unknown}
1312 [116; 125) 'some_iter': {unknown}
1313 [126; 152) '{ ... }': ()
1314 [140; 141) 'g': {unknown}
1315 [144; 145) 'e': {unknown}
1316 [158; 205) 'if let... }': ()
1317 [165; 170) '[val]': {unknown}
1318 [173; 176) 'opt': {unknown}
1319 [177; 205) '{ ... }': ()
1320 [191; 192) 'h': {unknown}
1321 [195; 198) 'val': {unknown}
1322 [215; 221) 'lambda': |u64, u64, i32| -> i32
1323 [224; 256) '|a: u6...b; c }': |u64, u64, i32| -> i32
1324 [225; 226) 'a': u64
1325 [233; 234) 'b': u64
1326 [236; 237) 'c': i32
1327 [244; 256) '{ a + b; c }': i32
1328 [246; 247) 'a': u64
1329 [246; 251) 'a + b': u64
1330 [250; 251) 'b': u64
1331 [253; 254) 'c': i32
1332 [267; 279) 'ref ref_to_x': &&i32
1333 [282; 283) 'x': &i32
1334 [293; 302) 'mut mut_x': &i32
1335 [305; 306) 'x': &i32
1336 [316; 336) 'ref mu...f_to_x': &mut &i32
1337 [339; 340) 'x': &i32
1338 [350; 351) 'k': &mut &i32
1339 [354; 366) 'mut_ref_to_x': &mut &i32
1340 "###
1341 );
1342}
1343
1344#[test]
1345fn infer_pattern_match_ergonomics() {
1346 assert_snapshot!(
1347 infer(r#"
1348struct A<T>(T);
1349
1350fn test() {
1351 let A(n) = &A(1);
1352 let A(n) = &mut A(1);
1353}
1354"#),
1355 @r###"
1356 [28; 79) '{ ...(1); }': ()
1357 [38; 42) 'A(n)': A<i32>
1358 [40; 41) 'n': &i32
1359 [45; 50) '&A(1)': &A<i32>
1360 [46; 47) 'A': A<i32>(T) -> A<T>
1361 [46; 50) 'A(1)': A<i32>
1362 [48; 49) '1': i32
1363 [60; 64) 'A(n)': A<i32>
1364 [62; 63) 'n': &mut i32
1365 [67; 76) '&mut A(1)': &mut A<i32>
1366 [72; 73) 'A': A<i32>(T) -> A<T>
1367 [72; 76) 'A(1)': A<i32>
1368 [74; 75) '1': i32
1369 "###
1370 );
1371}
1372
1373#[test]
1374fn infer_pattern_match_ergonomics_ref() {
1375 covers!(match_ergonomics_ref);
1376 assert_snapshot!(
1377 infer(r#"
1378fn test() {
1379 let v = &(1, &2);
1380 let (_, &w) = v;
1381}
1382"#),
1383 @r###"
1384 [11; 57) '{ ...= v; }': ()
1385 [21; 22) 'v': &(i32, &i32)
1386 [25; 33) '&(1, &2)': &(i32, &i32)
1387 [26; 33) '(1, &2)': (i32, &i32)
1388 [27; 28) '1': i32
1389 [30; 32) '&2': &i32
1390 [31; 32) '2': i32
1391 [43; 50) '(_, &w)': (i32, &i32)
1392 [44; 45) '_': i32
1393 [47; 49) '&w': &i32
1394 [48; 49) 'w': i32
1395 [53; 54) 'v': &(i32, &i32)
1396 "###
1397 );
1398}
1399
1400#[test]
1401fn infer_adt_pattern() {
1402 assert_snapshot!(
1403 infer(r#"
1404enum E {
1405 A { x: usize },
1406 B
1407}
1408
1409struct S(u32, E);
1410
1411fn test() {
1412 let e = E::A { x: 3 };
1413
1414 let S(y, z) = foo;
1415 let E::A { x: new_var } = e;
1416
1417 match e {
1418 E::A { x } => x,
1419 E::B if foo => 1,
1420 E::B => 10,
1421 };
1422
1423 let ref d @ E::A { .. } = e;
1424 d;
1425}
1426"#),
1427 @r###"
1428 [68; 289) '{ ... d; }': ()
1429 [78; 79) 'e': E
1430 [82; 95) 'E::A { x: 3 }': E
1431 [92; 93) '3': usize
1432 [106; 113) 'S(y, z)': S
1433 [108; 109) 'y': u32
1434 [111; 112) 'z': E
1435 [116; 119) 'foo': S
1436 [129; 148) 'E::A {..._var }': E
1437 [139; 146) 'new_var': usize
1438 [151; 152) 'e': E
1439 [159; 245) 'match ... }': usize
1440 [165; 166) 'e': E
1441 [177; 187) 'E::A { x }': E
1442 [184; 185) 'x': usize
1443 [191; 192) 'x': usize
1444 [202; 206) 'E::B': E
1445 [210; 213) 'foo': bool
1446 [217; 218) '1': usize
1447 [228; 232) 'E::B': E
1448 [236; 238) '10': usize
1449 [256; 275) 'ref d ...{ .. }': &E
1450 [264; 275) 'E::A { .. }': E
1451 [278; 279) 'e': E
1452 [285; 286) 'd': &E
1453 "###
1454 );
1455}
1456
1457#[test]
1458fn infer_struct_generics() {
1459 assert_snapshot!(
1460 infer(r#"
1461struct A<T> {
1462 x: T,
1463}
1464
1465fn test(a1: A<u32>, i: i32) {
1466 a1.x;
1467 let a2 = A { x: i };
1468 a2.x;
1469 let a3 = A::<i128> { x: 1 };
1470 a3.x;
1471}
1472"#),
1473 @r###"
1474 [36; 38) 'a1': A<u32>
1475 [48; 49) 'i': i32
1476 [56; 147) '{ ...3.x; }': ()
1477 [62; 64) 'a1': A<u32>
1478 [62; 66) 'a1.x': u32
1479 [76; 78) 'a2': A<i32>
1480 [81; 91) 'A { x: i }': A<i32>
1481 [88; 89) 'i': i32
1482 [97; 99) 'a2': A<i32>
1483 [97; 101) 'a2.x': i32
1484 [111; 113) 'a3': A<i128>
1485 [116; 134) 'A::<i1...x: 1 }': A<i128>
1486 [131; 132) '1': i128
1487 [140; 142) 'a3': A<i128>
1488 [140; 144) 'a3.x': i128
1489 "###
1490 );
1491}
1492
1493#[test]
1494fn infer_tuple_struct_generics() {
1495 assert_snapshot!(
1496 infer(r#"
1497struct A<T>(T);
1498enum Option<T> { Some(T), None }
1499use Option::*;
1500
1501fn test() {
1502 A(42);
1503 A(42u128);
1504 Some("x");
1505 Option::Some("x");
1506 None;
1507 let x: Option<i64> = None;
1508}
1509"#),
1510 @r###"
1511 [76; 184) '{ ...one; }': ()
1512 [82; 83) 'A': A<i32>(T) -> A<T>
1513 [82; 87) 'A(42)': A<i32>
1514 [84; 86) '42': i32
1515 [93; 94) 'A': A<u128>(T) -> A<T>
1516 [93; 102) 'A(42u128)': A<u128>
1517 [95; 101) '42u128': u128
1518 [108; 112) 'Some': Some<&str>(T) -> Option<T>
1519 [108; 117) 'Some("x")': Option<&str>
1520 [113; 116) '"x"': &str
1521 [123; 135) 'Option::Some': Some<&str>(T) -> Option<T>
1522 [123; 140) 'Option...e("x")': Option<&str>
1523 [136; 139) '"x"': &str
1524 [146; 150) 'None': Option<{unknown}>
1525 [160; 161) 'x': Option<i64>
1526 [177; 181) 'None': Option<i64>
1527 "###
1528 );
1529}
1530
1531#[test]
1532fn infer_generics_in_patterns() {
1533 assert_snapshot!(
1534 infer(r#"
1535struct A<T> {
1536 x: T,
1537}
1538
1539enum Option<T> {
1540 Some(T),
1541 None,
1542}
1543
1544fn test(a1: A<u32>, o: Option<u64>) {
1545 let A { x: x2 } = a1;
1546 let A::<i64> { x: x3 } = A { x: 1 };
1547 match o {
1548 Option::Some(t) => t,
1549 _ => 1,
1550 };
1551}
1552"#),
1553 @r###"
1554 [79; 81) 'a1': A<u32>
1555 [91; 92) 'o': Option<u64>
1556 [107; 244) '{ ... }; }': ()
1557 [117; 128) 'A { x: x2 }': A<u32>
1558 [124; 126) 'x2': u32
1559 [131; 133) 'a1': A<u32>
1560 [143; 161) 'A::<i6...: x3 }': A<i64>
1561 [157; 159) 'x3': i64
1562 [164; 174) 'A { x: 1 }': A<i64>
1563 [171; 172) '1': i64
1564 [180; 241) 'match ... }': u64
1565 [186; 187) 'o': Option<u64>
1566 [198; 213) 'Option::Some(t)': Option<u64>
1567 [211; 212) 't': u64
1568 [217; 218) 't': u64
1569 [228; 229) '_': Option<u64>
1570 [233; 234) '1': u64
1571 "###
1572 );
1573}
1574
1575#[test]
1576fn infer_function_generics() {
1577 assert_snapshot!(
1578 infer(r#"
1579fn id<T>(t: T) -> T { t }
1580
1581fn test() {
1582 id(1u32);
1583 id::<i128>(1);
1584 let x: u64 = id(1);
1585}
1586"#),
1587 @r###"
1588 [10; 11) 't': T
1589 [21; 26) '{ t }': T
1590 [23; 24) 't': T
1591 [38; 98) '{ ...(1); }': ()
1592 [44; 46) 'id': fn id<u32>(T) -> T
1593 [44; 52) 'id(1u32)': u32
1594 [47; 51) '1u32': u32
1595 [58; 68) 'id::<i128>': fn id<i128>(T) -> T
1596 [58; 71) 'id::<i128>(1)': i128
1597 [69; 70) '1': i128
1598 [81; 82) 'x': u64
1599 [90; 92) 'id': fn id<u64>(T) -> T
1600 [90; 95) 'id(1)': u64
1601 [93; 94) '1': u64
1602 "###
1603 );
1604}
1605
1606#[test]
1607fn infer_impl_generics() {
1608 assert_snapshot!(
1609 infer(r#"
1610struct A<T1, T2> {
1611 x: T1,
1612 y: T2,
1613}
1614impl<Y, X> A<X, Y> {
1615 fn x(self) -> X {
1616 self.x
1617 }
1618 fn y(self) -> Y {
1619 self.y
1620 }
1621 fn z<T>(self, t: T) -> (X, Y, T) {
1622 (self.x, self.y, t)
1623 }
1624}
1625
1626fn test() -> i128 {
1627 let a = A { x: 1u64, y: 1i64 };
1628 a.x();
1629 a.y();
1630 a.z(1i128);
1631 a.z::<u128>(1);
1632}
1633"#),
1634 @r###"
1635 [74; 78) 'self': A<X, Y>
1636 [85; 107) '{ ... }': X
1637 [95; 99) 'self': A<X, Y>
1638 [95; 101) 'self.x': X
1639 [117; 121) 'self': A<X, Y>
1640 [128; 150) '{ ... }': Y
1641 [138; 142) 'self': A<X, Y>
1642 [138; 144) 'self.y': Y
1643 [163; 167) 'self': A<X, Y>
1644 [169; 170) 't': T
1645 [188; 223) '{ ... }': (X, Y, T)
1646 [198; 217) '(self.....y, t)': (X, Y, T)
1647 [199; 203) 'self': A<X, Y>
1648 [199; 205) 'self.x': X
1649 [207; 211) 'self': A<X, Y>
1650 [207; 213) 'self.y': Y
1651 [215; 216) 't': T
1652 [245; 342) '{ ...(1); }': ()
1653 [255; 256) 'a': A<u64, i64>
1654 [259; 281) 'A { x:...1i64 }': A<u64, i64>
1655 [266; 270) '1u64': u64
1656 [275; 279) '1i64': i64
1657 [287; 288) 'a': A<u64, i64>
1658 [287; 292) 'a.x()': u64
1659 [298; 299) 'a': A<u64, i64>
1660 [298; 303) 'a.y()': i64
1661 [309; 310) 'a': A<u64, i64>
1662 [309; 319) 'a.z(1i128)': (u64, i64, i128)
1663 [313; 318) '1i128': i128
1664 [325; 326) 'a': A<u64, i64>
1665 [325; 339) 'a.z::<u128>(1)': (u64, i64, u128)
1666 [337; 338) '1': u128
1667 "###
1668 );
1669}
1670
1671#[test]
1672fn infer_impl_generics_with_autoderef() {
1673 assert_snapshot!(
1674 infer(r#"
1675enum Option<T> {
1676 Some(T),
1677 None,
1678}
1679impl<T> Option<T> {
1680 fn as_ref(&self) -> Option<&T> {}
1681}
1682fn test(o: Option<u32>) {
1683 (&o).as_ref();
1684 o.as_ref();
1685}
1686"#),
1687 @r###"
1688 [78; 82) 'self': &Option<T>
1689 [98; 100) '{}': ()
1690 [111; 112) 'o': Option<u32>
1691 [127; 165) '{ ...f(); }': ()
1692 [133; 146) '(&o).as_ref()': Option<&u32>
1693 [134; 136) '&o': &Option<u32>
1694 [135; 136) 'o': Option<u32>
1695 [152; 153) 'o': Option<u32>
1696 [152; 162) 'o.as_ref()': Option<&u32>
1697 "###
1698 );
1699}
1700
1701#[test]
1702fn infer_generic_chain() {
1703 assert_snapshot!(
1704 infer(r#"
1705struct A<T> {
1706 x: T,
1707}
1708impl<T2> A<T2> {
1709 fn x(self) -> T2 {
1710 self.x
1711 }
1712}
1713fn id<T>(t: T) -> T { t }
1714
1715fn test() -> i128 {
1716 let x = 1;
1717 let y = id(x);
1718 let a = A { x: id(y) };
1719 let z = id(a.x);
1720 let b = A { x: z };
1721 b.x()
1722}
1723"#),
1724 @r###"
1725 [53; 57) 'self': A<T2>
1726 [65; 87) '{ ... }': T2
1727 [75; 79) 'self': A<T2>
1728 [75; 81) 'self.x': T2
1729 [99; 100) 't': T
1730 [110; 115) '{ t }': T
1731 [112; 113) 't': T
1732 [135; 261) '{ ....x() }': i128
1733 [146; 147) 'x': i128
1734 [150; 151) '1': i128
1735 [162; 163) 'y': i128
1736 [166; 168) 'id': fn id<i128>(T) -> T
1737 [166; 171) 'id(x)': i128
1738 [169; 170) 'x': i128
1739 [182; 183) 'a': A<i128>
1740 [186; 200) 'A { x: id(y) }': A<i128>
1741 [193; 195) 'id': fn id<i128>(T) -> T
1742 [193; 198) 'id(y)': i128
1743 [196; 197) 'y': i128
1744 [211; 212) 'z': i128
1745 [215; 217) 'id': fn id<i128>(T) -> T
1746 [215; 222) 'id(a.x)': i128
1747 [218; 219) 'a': A<i128>
1748 [218; 221) 'a.x': i128
1749 [233; 234) 'b': A<i128>
1750 [237; 247) 'A { x: z }': A<i128>
1751 [244; 245) 'z': i128
1752 [254; 255) 'b': A<i128>
1753 [254; 259) 'b.x()': i128
1754 "###
1755 );
1756}
1757
1758#[test]
1759fn infer_associated_const() {
1760 assert_snapshot!(
1761 infer(r#"
1762struct Struct;
1763
1764impl Struct {
1765 const FOO: u32 = 1;
1766}
1767
1768enum Enum {}
1769
1770impl Enum {
1771 const BAR: u32 = 2;
1772}
1773
1774trait Trait {
1775 const ID: u32;
1776}
1777
1778struct TraitTest;
1779
1780impl Trait for TraitTest {
1781 const ID: u32 = 5;
1782}
1783
1784fn test() {
1785 let x = Struct::FOO;
1786 let y = Enum::BAR;
1787 let z = TraitTest::ID;
1788}
1789"#),
1790 @r###"
1791 [52; 53) '1': u32
1792 [105; 106) '2': u32
1793 [213; 214) '5': u32
1794 [229; 307) '{ ...:ID; }': ()
1795 [239; 240) 'x': u32
1796 [243; 254) 'Struct::FOO': u32
1797 [264; 265) 'y': u32
1798 [268; 277) 'Enum::BAR': u32
1799 [287; 288) 'z': u32
1800 [291; 304) 'TraitTest::ID': u32
1801 "###
1802 );
1803}
1804
1805#[test]
1806fn infer_associated_method_struct() {
1807 assert_snapshot!(
1808 infer(r#"
1809struct A { x: u32 }
1810
1811impl A {
1812 fn new() -> A {
1813 A { x: 0 }
1814 }
1815}
1816fn test() {
1817 let a = A::new();
1818 a.x;
1819}
1820"#),
1821 @r###"
1822 [49; 75) '{ ... }': A
1823 [59; 69) 'A { x: 0 }': A
1824 [66; 67) '0': u32
1825 [88; 122) '{ ...a.x; }': ()
1826 [98; 99) 'a': A
1827 [102; 108) 'A::new': fn new() -> A
1828 [102; 110) 'A::new()': A
1829 [116; 117) 'a': A
1830 [116; 119) 'a.x': u32
1831 "###
1832 );
1833}
1834
1835#[test]
1836fn infer_associated_method_enum() {
1837 assert_snapshot!(
1838 infer(r#"
1839enum A { B, C }
1840
1841impl A {
1842 pub fn b() -> A {
1843 A::B
1844 }
1845 pub fn c() -> A {
1846 A::C
1847 }
1848}
1849fn test() {
1850 let a = A::b();
1851 a;
1852 let c = A::c();
1853 c;
1854}
1855"#),
1856 @r###"
1857 [47; 67) '{ ... }': A
1858 [57; 61) 'A::B': A
1859 [88; 108) '{ ... }': A
1860 [98; 102) 'A::C': A
1861 [121; 178) '{ ... c; }': ()
1862 [131; 132) 'a': A
1863 [135; 139) 'A::b': fn b() -> A
1864 [135; 141) 'A::b()': A
1865 [147; 148) 'a': A
1866 [158; 159) 'c': A
1867 [162; 166) 'A::c': fn c() -> A
1868 [162; 168) 'A::c()': A
1869 [174; 175) 'c': A
1870 "###
1871 );
1872}
1873
1874#[test]
1875fn infer_associated_method_with_modules() {
1876 assert_snapshot!(
1877 infer(r#"
1878mod a {
1879 struct A;
1880 impl A { pub fn thing() -> A { A {} }}
1881}
1882
1883mod b {
1884 struct B;
1885 impl B { pub fn thing() -> u32 { 99 }}
1886
1887 mod c {
1888 struct C;
1889 impl C { pub fn thing() -> C { C {} }}
1890 }
1891}
1892use b::c;
1893
1894fn test() {
1895 let x = a::A::thing();
1896 let y = b::B::thing();
1897 let z = c::C::thing();
1898}
1899"#),
1900 @r###"
1901 [56; 64) '{ A {} }': A
1902 [58; 62) 'A {}': A
1903 [126; 132) '{ 99 }': u32
1904 [128; 130) '99': u32
1905 [202; 210) '{ C {} }': C
1906 [204; 208) 'C {}': C
1907 [241; 325) '{ ...g(); }': ()
1908 [251; 252) 'x': A
1909 [255; 266) 'a::A::thing': fn thing() -> A
1910 [255; 268) 'a::A::thing()': A
1911 [278; 279) 'y': u32
1912 [282; 293) 'b::B::thing': fn thing() -> u32
1913 [282; 295) 'b::B::thing()': u32
1914 [305; 306) 'z': C
1915 [309; 320) 'c::C::thing': fn thing() -> C
1916 [309; 322) 'c::C::thing()': C
1917 "###
1918 );
1919}
1920
1921#[test]
1922fn infer_associated_method_generics() {
1923 assert_snapshot!(
1924 infer(r#"
1925struct Gen<T> {
1926 val: T
1927}
1928
1929impl<T> Gen<T> {
1930 pub fn make(val: T) -> Gen<T> {
1931 Gen { val }
1932 }
1933}
1934
1935fn test() {
1936 let a = Gen::make(0u32);
1937}
1938"#),
1939 @r###"
1940 [64; 67) 'val': T
1941 [82; 109) '{ ... }': Gen<T>
1942 [92; 103) 'Gen { val }': Gen<T>
1943 [98; 101) 'val': T
1944 [123; 155) '{ ...32); }': ()
1945 [133; 134) 'a': Gen<u32>
1946 [137; 146) 'Gen::make': fn make<u32>(T) -> Gen<T>
1947 [137; 152) 'Gen::make(0u32)': Gen<u32>
1948 [147; 151) '0u32': u32
1949 "###
1950 );
1951}
1952
1953#[test]
1954fn infer_associated_method_generics_with_default_param() {
1955 assert_snapshot!(
1956 infer(r#"
1957struct Gen<T=u32> {
1958 val: T
1959}
1960
1961impl<T> Gen<T> {
1962 pub fn make() -> Gen<T> {
1963 loop { }
1964 }
1965}
1966
1967fn test() {
1968 let a = Gen::make();
1969}
1970"#),
1971 @r###"
1972 [80; 104) '{ ... }': Gen<T>
1973 [90; 98) 'loop { }': !
1974 [95; 98) '{ }': ()
1975 [118; 146) '{ ...e(); }': ()
1976 [128; 129) 'a': Gen<u32>
1977 [132; 141) 'Gen::make': fn make<u32>() -> Gen<T>
1978 [132; 143) 'Gen::make()': Gen<u32>
1979 "###
1980 );
1981}
1982
1983#[test]
1984fn infer_associated_method_generics_with_default_tuple_param() {
1985 let t = type_at(
1986 r#"
1987//- /main.rs
1988struct Gen<T=()> {
1989 val: T
1990}
1991
1992impl<T> Gen<T> {
1993 pub fn make() -> Gen<T> {
1994 loop { }
1995 }
1996}
1997
1998fn test() {
1999 let a = Gen::make();
2000 a.val<|>;
2001}
2002"#,
2003 );
2004 assert_eq!(t, "()");
2005}
2006
2007#[test]
2008fn infer_associated_method_generics_without_args() {
2009 assert_snapshot!(
2010 infer(r#"
2011struct Gen<T> {
2012 val: T
2013}
2014
2015impl<T> Gen<T> {
2016 pub fn make() -> Gen<T> {
2017 loop { }
2018 }
2019}
2020
2021fn test() {
2022 let a = Gen::<u32>::make();
2023}
2024"#),
2025 @r###"
2026 [76; 100) '{ ... }': Gen<T>
2027 [86; 94) 'loop { }': !
2028 [91; 94) '{ }': ()
2029 [114; 149) '{ ...e(); }': ()
2030 [124; 125) 'a': Gen<u32>
2031 [128; 144) 'Gen::<...::make': fn make<u32>() -> Gen<T>
2032 [128; 146) 'Gen::<...make()': Gen<u32>
2033 "###
2034 );
2035}
2036
2037#[test]
2038fn infer_associated_method_generics_2_type_params_without_args() {
2039 assert_snapshot!(
2040 infer(r#"
2041struct Gen<T, U> {
2042 val: T,
2043 val2: U,
2044}
2045
2046impl<T> Gen<u32, T> {
2047 pub fn make() -> Gen<u32,T> {
2048 loop { }
2049 }
2050}
2051
2052fn test() {
2053 let a = Gen::<u32, u64>::make();
2054}
2055"#),
2056 @r###"
2057 [102; 126) '{ ... }': Gen<u32, T>
2058 [112; 120) 'loop { }': !
2059 [117; 120) '{ }': ()
2060 [140; 180) '{ ...e(); }': ()
2061 [150; 151) 'a': Gen<u32, u64>
2062 [154; 175) 'Gen::<...::make': fn make<u64>() -> Gen<u32, T>
2063 [154; 177) 'Gen::<...make()': Gen<u32, u64>
2064 "###
2065 );
2066}
2067
2068#[test]
2069fn infer_type_alias() {
2070 assert_snapshot!(
2071 infer(r#"
2072struct A<X, Y> { x: X, y: Y }
2073type Foo = A<u32, i128>;
2074type Bar<T> = A<T, u128>;
2075type Baz<U, V> = A<V, U>;
2076fn test(x: Foo, y: Bar<&str>, z: Baz<i8, u8>) {
2077 x.x;
2078 x.y;
2079 y.x;
2080 y.y;
2081 z.x;
2082 z.y;
2083}
2084"#),
2085 @r###"
2086 [116; 117) 'x': A<u32, i128>
2087 [124; 125) 'y': A<&str, u128>
2088 [138; 139) 'z': A<u8, i8>
2089 [154; 211) '{ ...z.y; }': ()
2090 [160; 161) 'x': A<u32, i128>
2091 [160; 163) 'x.x': u32
2092 [169; 170) 'x': A<u32, i128>
2093 [169; 172) 'x.y': i128
2094 [178; 179) 'y': A<&str, u128>
2095 [178; 181) 'y.x': &str
2096 [187; 188) 'y': A<&str, u128>
2097 [187; 190) 'y.y': u128
2098 [196; 197) 'z': A<u8, i8>
2099 [196; 199) 'z.x': u8
2100 [205; 206) 'z': A<u8, i8>
2101 [205; 208) 'z.y': i8
2102 "###
2103 )
2104}
2105
2106#[test]
2107#[should_panic] // we currently can't handle this
2108fn recursive_type_alias() {
2109 assert_snapshot!(
2110 infer(r#"
2111struct A<X> {}
2112type Foo = Foo;
2113type Bar = A<Bar>;
2114fn test(x: Foo) {}
2115"#),
2116 @""
2117 )
2118}
2119
2120#[test]
2121fn no_panic_on_field_of_enum() {
2122 assert_snapshot!(
2123 infer(r#"
2124enum X {}
2125
2126fn test(x: X) {
2127 x.some_field;
2128}
2129"#),
2130 @r###"
2131 [20; 21) 'x': X
2132 [26; 47) '{ ...eld; }': ()
2133 [32; 33) 'x': X
2134 [32; 44) 'x.some_field': {unknown}
2135 "###
2136 );
2137}
2138
2139#[test]
2140fn bug_585() {
2141 assert_snapshot!(
2142 infer(r#"
2143fn test() {
2144 X {};
2145 match x {
2146 A::B {} => (),
2147 A::Y() => (),
2148 }
2149}
2150"#),
2151 @r###"
2152 [11; 89) '{ ... } }': ()
2153 [17; 21) 'X {}': {unknown}
2154 [27; 87) 'match ... }': ()
2155 [33; 34) 'x': {unknown}
2156 [45; 52) 'A::B {}': {unknown}
2157 [56; 58) '()': ()
2158 [68; 74) 'A::Y()': {unknown}
2159 [78; 80) '()': ()
2160 "###
2161 );
2162}
2163
2164#[test]
2165fn bug_651() {
2166 assert_snapshot!(
2167 infer(r#"
2168fn quux() {
2169 let y = 92;
2170 1 + y;
2171}
2172"#),
2173 @r###"
2174 [11; 41) '{ ...+ y; }': ()
2175 [21; 22) 'y': i32
2176 [25; 27) '92': i32
2177 [33; 34) '1': i32
2178 [33; 38) '1 + y': i32
2179 [37; 38) 'y': i32
2180 "###
2181 );
2182}
2183
2184#[test]
2185fn recursive_vars() {
2186 covers!(type_var_cycles_resolve_completely);
2187 covers!(type_var_cycles_resolve_as_possible);
2188 assert_snapshot!(
2189 infer(r#"
2190fn test() {
2191 let y = unknown;
2192 [y, &y];
2193}
2194"#),
2195 @r###"
2196 [11; 48) '{ ...&y]; }': ()
2197 [21; 22) 'y': &{unknown}
2198 [25; 32) 'unknown': &{unknown}
2199 [38; 45) '[y, &y]': [&&{unknown};_]
2200 [39; 40) 'y': &{unknown}
2201 [42; 44) '&y': &&{unknown}
2202 [43; 44) 'y': &{unknown}
2203 "###
2204 );
2205}
2206
2207#[test]
2208fn recursive_vars_2() {
2209 covers!(type_var_cycles_resolve_completely);
2210 covers!(type_var_cycles_resolve_as_possible);
2211 assert_snapshot!(
2212 infer(r#"
2213fn test() {
2214 let x = unknown;
2215 let y = unknown;
2216 [(x, y), (&y, &x)];
2217}
2218"#),
2219 @r###"
2220 [11; 80) '{ ...x)]; }': ()
2221 [21; 22) 'x': &&{unknown}
2222 [25; 32) 'unknown': &&{unknown}
2223 [42; 43) 'y': &&{unknown}
2224 [46; 53) 'unknown': &&{unknown}
2225 [59; 77) '[(x, y..., &x)]': [(&&&{unknown}, &&&{unknown});_]
2226 [60; 66) '(x, y)': (&&&{unknown}, &&&{unknown})
2227 [61; 62) 'x': &&{unknown}
2228 [64; 65) 'y': &&{unknown}
2229 [68; 76) '(&y, &x)': (&&&{unknown}, &&&{unknown})
2230 [69; 71) '&y': &&&{unknown}
2231 [70; 71) 'y': &&{unknown}
2232 [73; 75) '&x': &&&{unknown}
2233 [74; 75) 'x': &&{unknown}
2234 "###
2235 );
2236}
2237
2238#[test]
2239fn infer_type_param() {
2240 assert_snapshot!(
2241 infer(r#"
2242fn id<T>(x: T) -> T {
2243 x
2244}
2245
2246fn clone<T>(x: &T) -> T {
2247 *x
2248}
2249
2250fn test() {
2251 let y = 10u32;
2252 id(y);
2253 let x: bool = clone(z);
2254 id::<i128>(1);
2255}
2256"#),
2257 @r###"
2258 [10; 11) 'x': T
2259 [21; 30) '{ x }': T
2260 [27; 28) 'x': T
2261 [44; 45) 'x': &T
2262 [56; 66) '{ *x }': T
2263 [62; 64) '*x': T
2264 [63; 64) 'x': &T
2265 [78; 158) '{ ...(1); }': ()
2266 [88; 89) 'y': u32
2267 [92; 97) '10u32': u32
2268 [103; 105) 'id': fn id<u32>(T) -> T
2269 [103; 108) 'id(y)': u32
2270 [106; 107) 'y': u32
2271 [118; 119) 'x': bool
2272 [128; 133) 'clone': fn clone<bool>(&T) -> T
2273 [128; 136) 'clone(z)': bool
2274 [134; 135) 'z': &bool
2275 [142; 152) 'id::<i128>': fn id<i128>(T) -> T
2276 [142; 155) 'id::<i128>(1)': i128
2277 [153; 154) '1': i128
2278 "###
2279 );
2280}
2281
2282#[test]
2283fn infer_std_crash_1() {
2284 // caused stack overflow, taken from std
2285 assert_snapshot!(
2286 infer(r#"
2287enum Maybe<T> {
2288 Real(T),
2289 Fake,
2290}
2291
2292fn write() {
2293 match something_unknown {
2294 Maybe::Real(ref mut something) => (),
2295 }
2296}
2297"#),
2298 @r###"
2299 [54; 139) '{ ... } }': ()
2300 [60; 137) 'match ... }': ()
2301 [66; 83) 'someth...nknown': Maybe<{unknown}>
2302 [94; 124) 'Maybe:...thing)': Maybe<{unknown}>
2303 [106; 123) 'ref mu...ething': &mut {unknown}
2304 [128; 130) '()': ()
2305 "###
2306 );
2307}
2308
2309#[test]
2310fn infer_std_crash_2() {
2311 covers!(type_var_resolves_to_int_var);
2312 // caused "equating two type variables, ...", taken from std
2313 assert_snapshot!(
2314 infer(r#"
2315fn test_line_buffer() {
2316 &[0, b'\n', 1, b'\n'];
2317}
2318"#),
2319 @r###"
2320 [23; 53) '{ ...n']; }': ()
2321 [29; 50) '&[0, b...b'\n']': &[u8;_]
2322 [30; 50) '[0, b'...b'\n']': [u8;_]
2323 [31; 32) '0': u8
2324 [34; 39) 'b'\n'': u8
2325 [41; 42) '1': u8
2326 [44; 49) 'b'\n'': u8
2327 "###
2328 );
2329}
2330
2331#[test]
2332fn infer_std_crash_3() {
2333 // taken from rustc
2334 assert_snapshot!(
2335 infer(r#"
2336pub fn compute() {
2337 match nope!() {
2338 SizeSkeleton::Pointer { non_zero: true, tail } => {}
2339 }
2340}
2341"#),
2342 @r###"
2343 [18; 108) '{ ... } }': ()
2344 [24; 106) 'match ... }': ()
2345 [30; 37) 'nope!()': {unknown}
2346 [48; 94) 'SizeSk...tail }': {unknown}
2347 [82; 86) 'true': {unknown}
2348 [88; 92) 'tail': {unknown}
2349 [98; 100) '{}': ()
2350 "###
2351 );
2352}
2353
2354#[test]
2355fn infer_std_crash_4() {
2356 // taken from rustc
2357 assert_snapshot!(
2358 infer(r#"
2359pub fn primitive_type() {
2360 match *self {
2361 BorrowedRef { type_: Primitive(p), ..} => {},
2362 }
2363}
2364"#),
2365 @r###"
2366 [25; 106) '{ ... } }': ()
2367 [31; 104) 'match ... }': ()
2368 [37; 42) '*self': {unknown}
2369 [38; 42) 'self': {unknown}
2370 [53; 91) 'Borrow...), ..}': {unknown}
2371 [74; 86) 'Primitive(p)': {unknown}
2372 [84; 85) 'p': {unknown}
2373 [95; 97) '{}': ()
2374 "###
2375 );
2376}
2377
2378#[test]
2379fn infer_std_crash_5() {
2380 // taken from rustc
2381 assert_snapshot!(
2382 infer(r#"
2383fn extra_compiler_flags() {
2384 for content in doesnt_matter {
2385 let name = if doesnt_matter {
2386 first
2387 } else {
2388 &content
2389 };
2390
2391 let content = if ICE_REPORT_COMPILER_FLAGS_STRIP_VALUE.contains(&name) {
2392 name
2393 } else {
2394 content
2395 };
2396 }
2397}
2398"#),
2399 @r###"
2400 [27; 323) '{ ... } }': ()
2401 [33; 321) 'for co... }': ()
2402 [37; 44) 'content': &{unknown}
2403 [48; 61) 'doesnt_matter': {unknown}
2404 [62; 321) '{ ... }': ()
2405 [76; 80) 'name': &&{unknown}
2406 [83; 167) 'if doe... }': &&{unknown}
2407 [86; 99) 'doesnt_matter': bool
2408 [100; 129) '{ ... }': &&{unknown}
2409 [114; 119) 'first': &&{unknown}
2410 [135; 167) '{ ... }': &&{unknown}
2411 [149; 157) '&content': &&{unknown}
2412 [150; 157) 'content': &{unknown}
2413 [182; 189) 'content': &{unknown}
2414 [192; 314) 'if ICE... }': &{unknown}
2415 [195; 232) 'ICE_RE..._VALUE': {unknown}
2416 [195; 248) 'ICE_RE...&name)': bool
2417 [242; 247) '&name': &&&{unknown}
2418 [243; 247) 'name': &&{unknown}
2419 [249; 277) '{ ... }': &&{unknown}
2420 [263; 267) 'name': &&{unknown}
2421 [283; 314) '{ ... }': &{unknown}
2422 [297; 304) 'content': &{unknown}
2423 "###
2424 );
2425}
2426
2427#[test]
2428fn infer_nested_generics_crash() {
2429 // another crash found typechecking rustc
2430 assert_snapshot!(
2431 infer(r#"
2432struct Canonical<V> {
2433 value: V,
2434}
2435struct QueryResponse<V> {
2436 value: V,
2437}
2438fn test<R>(query_response: Canonical<QueryResponse<R>>) {
2439 &query_response.value;
2440}
2441"#),
2442 @r###"
2443 [92; 106) 'query_response': Canonical<QueryResponse<R>>
2444 [137; 167) '{ ...lue; }': ()
2445 [143; 164) '&query....value': &QueryResponse<R>
2446 [144; 158) 'query_response': Canonical<QueryResponse<R>>
2447 [144; 164) 'query_....value': QueryResponse<R>
2448 "###
2449 );
2450}
2451
2452#[test]
2453fn bug_1030() {
2454 assert_snapshot!(infer(r#"
2455struct HashSet<T, H>;
2456struct FxHasher;
2457type FxHashSet<T> = HashSet<T, FxHasher>;
2458
2459impl<T, H> HashSet<T, H> {
2460 fn default() -> HashSet<T, H> {}
2461}
2462
2463pub fn main_loop() {
2464 FxHashSet::default();
2465}
2466"#),
2467 @r###"
2468 [144; 146) '{}': ()
2469 [169; 198) '{ ...t(); }': ()
2470 [175; 193) 'FxHash...efault': fn default<{unknown}, FxHasher>() -> HashSet<T, H>
2471 [175; 195) 'FxHash...ault()': HashSet<{unknown}, FxHasher>
2472 "###
2473 );
2474}
2475
2476#[test]
2477fn cross_crate_associated_method_call() {
2478 let (db, pos) = TestDB::with_position(
2479 r#"
2480//- /main.rs crate:main deps:other_crate
2481fn test() {
2482 let x = other_crate::foo::S::thing();
2483 x<|>;
2484}
2485
2486//- /lib.rs crate:other_crate
2487mod foo {
2488 struct S;
2489 impl S {
2490 fn thing() -> i128 {}
2491 }
2492}
2493"#,
2494 );
2495 assert_eq!("i128", type_at_pos(&db, pos));
2496}
2497
2498#[test]
2499fn infer_const() {
2500 assert_snapshot!(
2501 infer(r#"
2502struct Foo;
2503impl Foo { const ASSOC_CONST: u32 = 0; }
2504const GLOBAL_CONST: u32 = 101;
2505fn test() {
2506 const LOCAL_CONST: u32 = 99;
2507 let x = LOCAL_CONST;
2508 let z = GLOBAL_CONST;
2509 let id = Foo::ASSOC_CONST;
2510}
2511"#),
2512 @r###"
2513 [49; 50) '0': u32
2514 [80; 83) '101': u32
2515 [95; 213) '{ ...NST; }': ()
2516 [138; 139) 'x': {unknown}
2517 [142; 153) 'LOCAL_CONST': {unknown}
2518 [163; 164) 'z': u32
2519 [167; 179) 'GLOBAL_CONST': u32
2520 [189; 191) 'id': u32
2521 [194; 210) 'Foo::A..._CONST': u32
2522 "###
2523 );
2524}
2525
2526#[test]
2527fn infer_static() {
2528 assert_snapshot!(
2529 infer(r#"
2530static GLOBAL_STATIC: u32 = 101;
2531static mut GLOBAL_STATIC_MUT: u32 = 101;
2532fn test() {
2533 static LOCAL_STATIC: u32 = 99;
2534 static mut LOCAL_STATIC_MUT: u32 = 99;
2535 let x = LOCAL_STATIC;
2536 let y = LOCAL_STATIC_MUT;
2537 let z = GLOBAL_STATIC;
2538 let w = GLOBAL_STATIC_MUT;
2539}
2540"#),
2541 @r###"
2542 [29; 32) '101': u32
2543 [70; 73) '101': u32
2544 [85; 280) '{ ...MUT; }': ()
2545 [173; 174) 'x': {unknown}
2546 [177; 189) 'LOCAL_STATIC': {unknown}
2547 [199; 200) 'y': {unknown}
2548 [203; 219) 'LOCAL_...IC_MUT': {unknown}
2549 [229; 230) 'z': u32
2550 [233; 246) 'GLOBAL_STATIC': u32
2551 [256; 257) 'w': u32
2552 [260; 277) 'GLOBAL...IC_MUT': u32
2553 "###
2554 );
2555}
2556
2557#[test]
2558fn infer_trait_method_simple() {
2559 // the trait implementation is intentionally incomplete -- it shouldn't matter
2560 assert_snapshot!(
2561 infer(r#"
2562trait Trait1 {
2563 fn method(&self) -> u32;
2564}
2565struct S1;
2566impl Trait1 for S1 {}
2567trait Trait2 {
2568 fn method(&self) -> i128;
2569}
2570struct S2;
2571impl Trait2 for S2 {}
2572fn test() {
2573 S1.method(); // -> u32
2574 S2.method(); // -> i128
2575}
2576"#),
2577 @r###"
2578 [31; 35) 'self': &Self
2579 [110; 114) 'self': &Self
2580 [170; 228) '{ ...i128 }': ()
2581 [176; 178) 'S1': S1
2582 [176; 187) 'S1.method()': u32
2583 [203; 205) 'S2': S2
2584 [203; 214) 'S2.method()': i128
2585 "###
2586 );
2587}
2588
2589#[test]
2590fn infer_trait_method_scoped() {
2591 // the trait implementation is intentionally incomplete -- it shouldn't matter
2592 assert_snapshot!(
2593 infer(r#"
2594struct S;
2595mod foo {
2596 pub trait Trait1 {
2597 fn method(&self) -> u32;
2598 }
2599 impl Trait1 for super::S {}
2600}
2601mod bar {
2602 pub trait Trait2 {
2603 fn method(&self) -> i128;
2604 }
2605 impl Trait2 for super::S {}
2606}
2607
2608mod foo_test {
2609 use super::S;
2610 use super::foo::Trait1;
2611 fn test() {
2612 S.method(); // -> u32
2613 }
2614}
2615
2616mod bar_test {
2617 use super::S;
2618 use super::bar::Trait2;
2619 fn test() {
2620 S.method(); // -> i128
2621 }
2622}
2623"#),
2624 @r###"
2625 [63; 67) 'self': &Self
2626 [169; 173) 'self': &Self
2627 [300; 337) '{ ... }': ()
2628 [310; 311) 'S': S
2629 [310; 320) 'S.method()': u32
2630 [416; 454) '{ ... }': ()
2631 [426; 427) 'S': S
2632 [426; 436) 'S.method()': i128
2633 "###
2634 );
2635}
2636
2637#[test]
2638fn infer_trait_method_generic_1() {
2639 // the trait implementation is intentionally incomplete -- it shouldn't matter
2640 assert_snapshot!(
2641 infer(r#"
2642trait Trait<T> {
2643 fn method(&self) -> T;
2644}
2645struct S;
2646impl Trait<u32> for S {}
2647fn test() {
2648 S.method();
2649}
2650"#),
2651 @r###"
2652 [33; 37) 'self': &Self
2653 [92; 111) '{ ...d(); }': ()
2654 [98; 99) 'S': S
2655 [98; 108) 'S.method()': u32
2656 "###
2657 );
2658}
2659
2660#[test]
2661fn infer_trait_method_generic_more_params() {
2662 // the trait implementation is intentionally incomplete -- it shouldn't matter
2663 assert_snapshot!(
2664 infer(r#"
2665trait Trait<T1, T2, T3> {
2666 fn method1(&self) -> (T1, T2, T3);
2667 fn method2(&self) -> (T3, T2, T1);
2668}
2669struct S1;
2670impl Trait<u8, u16, u32> for S1 {}
2671struct S2;
2672impl<T> Trait<i8, i16, T> for S2 {}
2673fn test() {
2674 S1.method1(); // u8, u16, u32
2675 S1.method2(); // u32, u16, u8
2676 S2.method1(); // i8, i16, {unknown}
2677 S2.method2(); // {unknown}, i16, i8
2678}
2679"#),
2680 @r###"
2681 [43; 47) 'self': &Self
2682 [82; 86) 'self': &Self
2683 [210; 361) '{ ..., i8 }': ()
2684 [216; 218) 'S1': S1
2685 [216; 228) 'S1.method1()': (u8, u16, u32)
2686 [250; 252) 'S1': S1
2687 [250; 262) 'S1.method2()': (u32, u16, u8)
2688 [284; 286) 'S2': S2
2689 [284; 296) 'S2.method1()': (i8, i16, {unknown})
2690 [324; 326) 'S2': S2
2691 [324; 336) 'S2.method2()': ({unknown}, i16, i8)
2692 "###
2693 );
2694}
2695
2696#[test]
2697fn infer_trait_method_generic_2() {
2698 // the trait implementation is intentionally incomplete -- it shouldn't matter
2699 assert_snapshot!(
2700 infer(r#"
2701trait Trait<T> {
2702 fn method(&self) -> T;
2703}
2704struct S<T>(T);
2705impl<U> Trait<U> for S<U> {}
2706fn test() {
2707 S(1u32).method();
2708}
2709"#),
2710 @r###"
2711 [33; 37) 'self': &Self
2712 [102; 127) '{ ...d(); }': ()
2713 [108; 109) 'S': S<u32>(T) -> S<T>
2714 [108; 115) 'S(1u32)': S<u32>
2715 [108; 124) 'S(1u32...thod()': u32
2716 [110; 114) '1u32': u32
2717 "###
2718 );
2719}
2720
2721#[test]
2722fn infer_trait_assoc_method() {
2723 assert_snapshot!(
2724 infer(r#"
2725trait Default {
2726 fn default() -> Self;
2727}
2728struct S;
2729impl Default for S {}
2730fn test() {
2731 let s1: S = Default::default();
2732 let s2 = S::default();
2733 let s3 = <S as Default>::default();
2734}
2735"#),
2736 @r###"
2737 [87; 193) '{ ...t(); }': ()
2738 [97; 99) 's1': S
2739 [105; 121) 'Defaul...efault': fn default<S>() -> Self
2740 [105; 123) 'Defaul...ault()': S
2741 [133; 135) 's2': S
2742 [138; 148) 'S::default': fn default<S>() -> Self
2743 [138; 150) 'S::default()': S
2744 [160; 162) 's3': S
2745 [165; 188) '<S as ...efault': fn default<S>() -> Self
2746 [165; 190) '<S as ...ault()': S
2747 "###
2748 );
2749}
2750
2751#[test]
2752fn infer_trait_assoc_method_generics_1() {
2753 assert_snapshot!(
2754 infer(r#"
2755trait Trait<T> {
2756 fn make() -> T;
2757}
2758struct S;
2759impl Trait<u32> for S {}
2760struct G<T>;
2761impl<T> Trait<T> for G<T> {}
2762fn test() {
2763 let a = S::make();
2764 let b = G::<u64>::make();
2765 let c: f64 = G::make();
2766}
2767"#),
2768 @r###"
2769 [127; 211) '{ ...e(); }': ()
2770 [137; 138) 'a': u32
2771 [141; 148) 'S::make': fn make<S, u32>() -> T
2772 [141; 150) 'S::make()': u32
2773 [160; 161) 'b': u64
2774 [164; 178) 'G::<u64>::make': fn make<G<u64>, u64>() -> T
2775 [164; 180) 'G::<u6...make()': u64
2776 [190; 191) 'c': f64
2777 [199; 206) 'G::make': fn make<G<f64>, f64>() -> T
2778 [199; 208) 'G::make()': f64
2779 "###
2780 );
2781}
2782
2783#[test]
2784fn infer_trait_assoc_method_generics_2() {
2785 assert_snapshot!(
2786 infer(r#"
2787trait Trait<T> {
2788 fn make<U>() -> (T, U);
2789}
2790struct S;
2791impl Trait<u32> for S {}
2792struct G<T>;
2793impl<T> Trait<T> for G<T> {}
2794fn test() {
2795 let a = S::make::<i64>();
2796 let b: (_, i64) = S::make();
2797 let c = G::<u32>::make::<i64>();
2798 let d: (u32, _) = G::make::<i64>();
2799 let e: (u32, i64) = G::make();
2800}
2801"#),
2802 @r###"
2803 [135; 313) '{ ...e(); }': ()
2804 [145; 146) 'a': (u32, i64)
2805 [149; 163) 'S::make::<i64>': fn make<S, u32, i64>() -> (T, U)
2806 [149; 165) 'S::mak...i64>()': (u32, i64)
2807 [175; 176) 'b': (u32, i64)
2808 [189; 196) 'S::make': fn make<S, u32, i64>() -> (T, U)
2809 [189; 198) 'S::make()': (u32, i64)
2810 [208; 209) 'c': (u32, i64)
2811 [212; 233) 'G::<u3...:<i64>': fn make<G<u32>, u32, i64>() -> (T, U)
2812 [212; 235) 'G::<u3...i64>()': (u32, i64)
2813 [245; 246) 'd': (u32, i64)
2814 [259; 273) 'G::make::<i64>': fn make<G<u32>, u32, i64>() -> (T, U)
2815 [259; 275) 'G::mak...i64>()': (u32, i64)
2816 [285; 286) 'e': (u32, i64)
2817 [301; 308) 'G::make': fn make<G<u32>, u32, i64>() -> (T, U)
2818 [301; 310) 'G::make()': (u32, i64)
2819 "###
2820 );
2821}
2822
2823#[test]
2824fn infer_trait_assoc_method_generics_3() {
2825 assert_snapshot!(
2826 infer(r#"
2827trait Trait<T> {
2828 fn make() -> (Self, T);
2829}
2830struct S<T>;
2831impl Trait<i64> for S<i32> {}
2832fn test() {
2833 let a = S::make();
2834}
2835"#),
2836 @r###"
2837 [101; 127) '{ ...e(); }': ()
2838 [111; 112) 'a': (S<i32>, i64)
2839 [115; 122) 'S::make': fn make<S<i32>, i64>() -> (Self, T)
2840 [115; 124) 'S::make()': (S<i32>, i64)
2841 "###
2842 );
2843}
2844
2845#[test]
2846fn infer_trait_assoc_method_generics_4() {
2847 assert_snapshot!(
2848 infer(r#"
2849trait Trait<T> {
2850 fn make() -> (Self, T);
2851}
2852struct S<T>;
2853impl Trait<i64> for S<u64> {}
2854impl Trait<i32> for S<u32> {}
2855fn test() {
2856 let a: (S<u64>, _) = S::make();
2857 let b: (_, i32) = S::make();
2858}
2859"#),
2860 @r###"
2861 [131; 203) '{ ...e(); }': ()
2862 [141; 142) 'a': (S<u64>, i64)
2863 [158; 165) 'S::make': fn make<S<u64>, i64>() -> (Self, T)
2864 [158; 167) 'S::make()': (S<u64>, i64)
2865 [177; 178) 'b': (S<u32>, i32)
2866 [191; 198) 'S::make': fn make<S<u32>, i32>() -> (Self, T)
2867 [191; 200) 'S::make()': (S<u32>, i32)
2868 "###
2869 );
2870}
2871
2872#[test]
2873fn infer_trait_assoc_method_generics_5() {
2874 assert_snapshot!(
2875 infer(r#"
2876trait Trait<T> {
2877 fn make<U>() -> (Self, T, U);
2878}
2879struct S<T>;
2880impl Trait<i64> for S<u64> {}
2881fn test() {
2882 let a = <S as Trait<i64>>::make::<u8>();
2883 let b: (S<u64>, _, _) = Trait::<i64>::make::<u8>();
2884}
2885"#),
2886 @r###"
2887 [107; 211) '{ ...>(); }': ()
2888 [117; 118) 'a': (S<u64>, i64, u8)
2889 [121; 150) '<S as ...::<u8>': fn make<S<u64>, i64, u8>() -> (Self, T, U)
2890 [121; 152) '<S as ...<u8>()': (S<u64>, i64, u8)
2891 [162; 163) 'b': (S<u64>, i64, u8)
2892 [182; 206) 'Trait:...::<u8>': fn make<S<u64>, i64, u8>() -> (Self, T, U)
2893 [182; 208) 'Trait:...<u8>()': (S<u64>, i64, u8)
2894 "###
2895 );
2896}
2897
2898#[test]
2899fn infer_from_bound_1() {
2900 assert_snapshot!(
2901 infer(r#"
2902trait Trait<T> {}
2903struct S<T>(T);
2904impl<U> Trait<U> for S<U> {}
2905fn foo<T: Trait<u32>>(t: T) {}
2906fn test() {
2907 let s = S(unknown);
2908 foo(s);
2909}
2910"#),
2911 @r###"
2912 [86; 87) 't': T
2913 [92; 94) '{}': ()
2914 [105; 144) '{ ...(s); }': ()
2915 [115; 116) 's': S<u32>
2916 [119; 120) 'S': S<u32>(T) -> S<T>
2917 [119; 129) 'S(unknown)': S<u32>
2918 [121; 128) 'unknown': u32
2919 [135; 138) 'foo': fn foo<S<u32>>(T) -> ()
2920 [135; 141) 'foo(s)': ()
2921 [139; 140) 's': S<u32>
2922 "###
2923 );
2924}
2925
2926#[test]
2927fn infer_from_bound_2() {
2928 assert_snapshot!(
2929 infer(r#"
2930trait Trait<T> {}
2931struct S<T>(T);
2932impl<U> Trait<U> for S<U> {}
2933fn foo<U, T: Trait<U>>(t: T) -> U {}
2934fn test() {
2935 let s = S(unknown);
2936 let x: u32 = foo(s);
2937}
2938"#),
2939 @r###"
2940 [87; 88) 't': T
2941 [98; 100) '{}': ()
2942 [111; 163) '{ ...(s); }': ()
2943 [121; 122) 's': S<u32>
2944 [125; 126) 'S': S<u32>(T) -> S<T>
2945 [125; 135) 'S(unknown)': S<u32>
2946 [127; 134) 'unknown': u32
2947 [145; 146) 'x': u32
2948 [154; 157) 'foo': fn foo<u32, S<u32>>(T) -> U
2949 [154; 160) 'foo(s)': u32
2950 [158; 159) 's': S<u32>
2951 "###
2952 );
2953}
2954
2955#[test]
2956fn infer_call_trait_method_on_generic_param_1() {
2957 assert_snapshot!(
2958 infer(r#"
2959trait Trait {
2960 fn method(&self) -> u32;
2961}
2962fn test<T: Trait>(t: T) {
2963 t.method();
2964}
2965"#),
2966 @r###"
2967 [30; 34) 'self': &Self
2968 [64; 65) 't': T
2969 [70; 89) '{ ...d(); }': ()
2970 [76; 77) 't': T
2971 [76; 86) 't.method()': u32
2972 "###
2973 );
2974}
2975
2976#[test]
2977fn infer_call_trait_method_on_generic_param_2() {
2978 assert_snapshot!(
2979 infer(r#"
2980trait Trait<T> {
2981 fn method(&self) -> T;
2982}
2983fn test<U, T: Trait<U>>(t: T) {
2984 t.method();
2985}
2986"#),
2987 @r###"
2988 [33; 37) 'self': &Self
2989 [71; 72) 't': T
2990 [77; 96) '{ ...d(); }': ()
2991 [83; 84) 't': T
2992 [83; 93) 't.method()': [missing name]
2993 "###
2994 );
2995}
2996
2997#[test]
2998fn infer_with_multiple_trait_impls() {
2999 assert_snapshot!(
3000 infer(r#"
3001trait Into<T> {
3002 fn into(self) -> T;
3003}
3004struct S;
3005impl Into<u32> for S {}
3006impl Into<u64> for S {}
3007fn test() {
3008 let x: u32 = S.into();
3009 let y: u64 = S.into();
3010 let z = Into::<u64>::into(S);
3011}
3012"#),
3013 @r###"
3014 [29; 33) 'self': Self
3015 [111; 202) '{ ...(S); }': ()
3016 [121; 122) 'x': u32
3017 [130; 131) 'S': S
3018 [130; 138) 'S.into()': u32
3019 [148; 149) 'y': u64
3020 [157; 158) 'S': S
3021 [157; 165) 'S.into()': u64
3022 [175; 176) 'z': u64
3023 [179; 196) 'Into::...::into': fn into<S, u64>(Self) -> T
3024 [179; 199) 'Into::...nto(S)': u64
3025 [197; 198) 'S': S
3026 "###
3027 );
3028}
3029
3030#[test]
3031fn infer_project_associated_type() {
3032 // y, z, a don't yet work because of https://github.com/rust-lang/chalk/issues/234
3033 assert_snapshot!(
3034 infer(r#"
3035trait Iterable {
3036 type Item;
3037}
3038struct S;
3039impl Iterable for S { type Item = u32; }
3040fn test<T: Iterable>() {
3041 let x: <S as Iterable>::Item = 1;
3042 let y: <T as Iterable>::Item = no_matter;
3043 let z: T::Item = no_matter;
3044 let a: <T>::Item = no_matter;
3045}
3046"#),
3047 @r###"
3048 [108; 261) '{ ...ter; }': ()
3049 [118; 119) 'x': u32
3050 [145; 146) '1': u32
3051 [156; 157) 'y': {unknown}
3052 [183; 192) 'no_matter': {unknown}
3053 [202; 203) 'z': {unknown}
3054 [215; 224) 'no_matter': {unknown}
3055 [234; 235) 'a': {unknown}
3056 [249; 258) 'no_matter': {unknown}
3057 "###
3058 );
3059}
3060
3061#[test]
3062fn infer_return_associated_type() {
3063 assert_snapshot!(
3064 infer(r#"
3065trait Iterable {
3066 type Item;
3067}
3068struct S;
3069impl Iterable for S { type Item = u32; }
3070fn foo1<T: Iterable>(t: T) -> T::Item {}
3071fn foo2<T: Iterable>(t: T) -> <T as Iterable>::Item {}
3072fn foo3<T: Iterable>(t: T) -> <T>::Item {}
3073fn test() {
3074 let x = foo1(S);
3075 let y = foo2(S);
3076 let z = foo3(S);
3077}
3078"#),
3079 @r###"
3080 [106; 107) 't': T
3081 [123; 125) '{}': ()
3082 [147; 148) 't': T
3083 [178; 180) '{}': ()
3084 [202; 203) 't': T
3085 [221; 223) '{}': ()
3086 [234; 300) '{ ...(S); }': ()
3087 [244; 245) 'x': u32
3088 [248; 252) 'foo1': fn foo1<S>(T) -> <T as Iterable>::Item
3089 [248; 255) 'foo1(S)': u32
3090 [253; 254) 'S': S
3091 [265; 266) 'y': u32
3092 [269; 273) 'foo2': fn foo2<S>(T) -> <T as Iterable>::Item
3093 [269; 276) 'foo2(S)': u32
3094 [274; 275) 'S': S
3095 [286; 287) 'z': u32
3096 [290; 294) 'foo3': fn foo3<S>(T) -> <T as Iterable>::Item
3097 [290; 297) 'foo3(S)': u32
3098 [295; 296) 'S': S
3099 "###
3100 );
3101}
3102
3103#[test]
3104fn infer_associated_type_bound() {
3105 assert_snapshot!(
3106 infer(r#"
3107trait Iterable {
3108 type Item;
3109}
3110fn test<T: Iterable<Item=u32>>() {
3111 let y: T::Item = unknown;
3112}
3113"#),
3114 @r###"
3115 [67; 100) '{ ...own; }': ()
3116 [77; 78) 'y': {unknown}
3117 [90; 97) 'unknown': {unknown}
3118 "###
3119 );
3120}
3121
3122#[test]
3123fn infer_const_body() {
3124 assert_snapshot!(
3125 infer(r#"
3126const A: u32 = 1 + 1;
3127static B: u64 = { let x = 1; x };
3128"#),
3129 @r###"
3130 [16; 17) '1': u32
3131 [16; 21) '1 + 1': u32
3132 [20; 21) '1': u32
3133 [39; 55) '{ let ...1; x }': u64
3134 [45; 46) 'x': u64
3135 [49; 50) '1': u64
3136 [52; 53) 'x': u64
3137 "###
3138 );
3139}
3140
3141#[test]
3142fn tuple_struct_fields() {
3143 assert_snapshot!(
3144 infer(r#"
3145struct S(i32, u64);
3146fn test() -> u64 {
3147 let a = S(4, 6);
3148 let b = a.0;
3149 a.1
3150}
3151"#),
3152 @r###"
3153 [38; 87) '{ ... a.1 }': u64
3154 [48; 49) 'a': S
3155 [52; 53) 'S': S(i32, u64) -> S
3156 [52; 59) 'S(4, 6)': S
3157 [54; 55) '4': i32
3158 [57; 58) '6': u64
3159 [69; 70) 'b': i32
3160 [73; 74) 'a': S
3161 [73; 76) 'a.0': i32
3162 [82; 83) 'a': S
3163 [82; 85) 'a.1': u64
3164 "###
3165 );
3166}
3167
3168#[test]
3169fn tuple_struct_with_fn() {
3170 assert_snapshot!(
3171 infer(r#"
3172struct S(fn(u32) -> u64);
3173fn test() -> u64 {
3174 let a = S(|i| 2*i);
3175 let b = a.0(4);
3176 a.0(2)
3177}
3178"#),
3179 @r###"
3180 [44; 102) '{ ...0(2) }': u64
3181 [54; 55) 'a': S
3182 [58; 59) 'S': S(fn(u32) -> u64) -> S
3183 [58; 68) 'S(|i| 2*i)': S
3184 [60; 67) '|i| 2*i': |i32| -> i32
3185 [61; 62) 'i': i32
3186 [64; 65) '2': i32
3187 [64; 67) '2*i': i32
3188 [66; 67) 'i': i32
3189 [78; 79) 'b': u64
3190 [82; 83) 'a': S
3191 [82; 85) 'a.0': fn(u32) -> u64
3192 [82; 88) 'a.0(4)': u64
3193 [86; 87) '4': u32
3194 [94; 95) 'a': S
3195 [94; 97) 'a.0': fn(u32) -> u64
3196 [94; 100) 'a.0(2)': u64
3197 [98; 99) '2': u32
3198 "###
3199 );
3200}
3201
3202#[test]
3203fn indexing_arrays() {
3204 assert_snapshot!(
3205 infer("fn main() { &mut [9][2]; }"),
3206 @r###"
3207 [10; 26) '{ &mut...[2]; }': ()
3208 [12; 23) '&mut [9][2]': &mut {unknown}
3209 [17; 20) '[9]': [i32;_]
3210 [17; 23) '[9][2]': {unknown}
3211 [18; 19) '9': i32
3212 [21; 22) '2': i32
3213 "###
3214 )
3215}
3216
3217#[test]
3218fn infer_macros_expanded() {
3219 assert_snapshot!(
3220 infer(r#"
3221struct Foo(Vec<i32>);
3222
3223macro_rules! foo {
3224 ($($item:expr),*) => {
3225 {
3226 Foo(vec![$($item,)*])
3227 }
3228 };
3229}
3230
3231fn main() {
3232 let x = foo!(1,2);
3233}
3234"#),
3235 @r###"
3236 ![0; 17) '{Foo(v...,2,])}': Foo
3237 ![1; 4) 'Foo': Foo({unknown}) -> Foo
3238 ![1; 16) 'Foo(vec![1,2,])': Foo
3239 ![5; 15) 'vec![1,2,]': {unknown}
3240 [156; 182) '{ ...,2); }': ()
3241 [166; 167) 'x': Foo
3242 "###
3243 );
3244}
3245
3246#[test]
3247fn infer_legacy_textual_scoped_macros_expanded() {
3248 assert_snapshot!(
3249 infer(r#"
3250struct Foo(Vec<i32>);
3251
3252#[macro_use]
3253mod m {
3254 macro_rules! foo {
3255 ($($item:expr),*) => {
3256 {
3257 Foo(vec![$($item,)*])
3258 }
3259 };
3260 }
3261}
3262
3263fn main() {
3264 let x = foo!(1,2);
3265 let y = crate::foo!(1,2);
3266}
3267"#),
3268 @r###"
3269 ![0; 17) '{Foo(v...,2,])}': Foo
3270 ![1; 4) 'Foo': Foo({unknown}) -> Foo
3271 ![1; 16) 'Foo(vec![1,2,])': Foo
3272 ![5; 15) 'vec![1,2,]': {unknown}
3273 [195; 251) '{ ...,2); }': ()
3274 [205; 206) 'x': Foo
3275 [228; 229) 'y': {unknown}
3276 [232; 248) 'crate:...!(1,2)': {unknown}
3277 "###
3278 );
3279}
3280
3281#[test]
3282fn infer_path_qualified_macros_expanded() {
3283 assert_snapshot!(
3284 infer(r#"
3285#[macro_export]
3286macro_rules! foo {
3287 () => { 42i32 }
3288}
3289
3290mod m {
3291 pub use super::foo as bar;
3292}
3293
3294fn main() {
3295 let x = crate::foo!();
3296 let y = m::bar!();
3297}
3298"#),
3299 @r###"
3300 ![0; 5) '42i32': i32
3301 ![0; 5) '42i32': i32
3302 [111; 164) '{ ...!(); }': ()
3303 [121; 122) 'x': i32
3304 [148; 149) 'y': i32
3305 "###
3306 );
3307}
3308
3309#[test]
3310fn infer_type_value_macro_having_same_name() {
3311 assert_snapshot!(
3312 infer(r#"
3313#[macro_export]
3314macro_rules! foo {
3315 () => {
3316 mod foo {
3317 pub use super::foo;
3318 }
3319 };
3320 ($x:tt) => {
3321 $x
3322 };
3323}
3324
3325foo!();
3326
3327fn foo() {
3328 let foo = foo::foo!(42i32);
3329}
3330"#),
3331 @r###"
3332 ![0; 5) '42i32': i32
3333 [171; 206) '{ ...32); }': ()
3334 [181; 184) 'foo': i32
3335 "###
3336 );
3337}
3338
3339#[test]
3340fn processes_impls_generated_by_macros() {
3341 let t = type_at(
3342 r#"
3343//- /main.rs
3344macro_rules! m {
3345 ($ident:ident) => (impl Trait for $ident {})
3346}
3347trait Trait { fn foo(self) -> u128 {} }
3348struct S;
3349m!(S);
3350fn test() { S.foo()<|>; }
3351"#,
3352 );
3353 assert_eq!(t, "u128");
3354}
3355
3356#[test]
3357fn infer_macro_with_dollar_crate_is_correct_in_expr() {
3358 let (db, pos) = TestDB::with_position(
3359 r#"
3360//- /main.rs crate:main deps:foo
3361fn test() {
3362 let x = (foo::foo!(1), foo::foo!(2));
3363 x<|>;
3364}
3365
3366//- /lib.rs crate:foo
3367#[macro_export]
3368macro_rules! foo {
3369 (1) => { $crate::bar!() };
3370 (2) => { 1 + $crate::baz() };
3371}
3372
3373#[macro_export]
3374macro_rules! bar {
3375 () => { 42 }
3376}
3377
3378pub fn baz() -> usize { 31usize }
3379"#,
3380 );
3381 assert_eq!("(i32, usize)", type_at_pos(&db, pos));
3382}
3383
3384#[ignore]
3385#[test]
3386fn method_resolution_trait_before_autoref() {
3387 let t = type_at(
3388 r#"
3389//- /main.rs
3390trait Trait { fn foo(self) -> u128; }
3391struct S;
3392impl S { fn foo(&self) -> i8 { 0 } }
3393impl Trait for S { fn foo(self) -> u128 { 0 } }
3394fn test() { S.foo()<|>; }
3395"#,
3396 );
3397 assert_eq!(t, "u128");
3398}
3399
3400#[ignore]
3401#[test]
3402fn method_resolution_by_value_before_autoref() {
3403 let t = type_at(
3404 r#"
3405//- /main.rs
3406trait Clone { fn clone(&self) -> Self; }
3407struct S;
3408impl Clone for S {}
3409impl Clone for &S {}
3410fn test() { (S.clone(), (&S).clone(), (&&S).clone())<|>; }
3411"#,
3412 );
3413 assert_eq!(t, "(S, S, &S)");
3414}
3415
3416#[test]
3417fn method_resolution_trait_before_autoderef() {
3418 let t = type_at(
3419 r#"
3420//- /main.rs
3421trait Trait { fn foo(self) -> u128; }
3422struct S;
3423impl S { fn foo(self) -> i8 { 0 } }
3424impl Trait for &S { fn foo(self) -> u128 { 0 } }
3425fn test() { (&S).foo()<|>; }
3426"#,
3427 );
3428 assert_eq!(t, "u128");
3429}
3430
3431#[test]
3432fn method_resolution_impl_before_trait() {
3433 let t = type_at(
3434 r#"
3435//- /main.rs
3436trait Trait { fn foo(self) -> u128; }
3437struct S;
3438impl S { fn foo(self) -> i8 { 0 } }
3439impl Trait for S { fn foo(self) -> u128 { 0 } }
3440fn test() { S.foo()<|>; }
3441"#,
3442 );
3443 assert_eq!(t, "i8");
3444}
3445
3446#[test]
3447fn method_resolution_trait_autoderef() {
3448 let t = type_at(
3449 r#"
3450//- /main.rs
3451trait Trait { fn foo(self) -> u128; }
3452struct S;
3453impl Trait for S { fn foo(self) -> u128 { 0 } }
3454fn test() { (&S).foo()<|>; }
3455"#,
3456 );
3457 assert_eq!(t, "u128");
3458}
3459
3460#[test]
3461fn method_resolution_trait_from_prelude() {
3462 let (db, pos) = TestDB::with_position(
3463 r#"
3464//- /main.rs crate:main deps:other_crate
3465struct S;
3466impl Clone for S {}
3467
3468fn test() {
3469 S.clone()<|>;
3470}
3471
3472//- /lib.rs crate:other_crate
3473#[prelude_import] use foo::*;
3474
3475mod foo {
3476 trait Clone {
3477 fn clone(&self) -> Self;
3478 }
3479}
3480"#,
3481 );
3482 assert_eq!("S", type_at_pos(&db, pos));
3483}
3484
3485#[test]
3486fn method_resolution_where_clause_for_unknown_trait() {
3487 // The blanket impl shouldn't apply because we can't even resolve UnknownTrait
3488 let t = type_at(
3489 r#"
3490//- /main.rs
3491trait Trait { fn foo(self) -> u128; }
3492struct S;
3493impl<T> Trait for T where T: UnknownTrait {}
3494fn test() { (&S).foo()<|>; }
3495"#,
3496 );
3497 assert_eq!(t, "{unknown}");
3498}
3499
3500#[test]
3501fn method_resolution_where_clause_not_met() {
3502 // The blanket impl shouldn't apply because we can't prove S: Clone
3503 let t = type_at(
3504 r#"
3505//- /main.rs
3506trait Clone {}
3507trait Trait { fn foo(self) -> u128; }
3508struct S;
3509impl<T> Trait for T where T: Clone {}
3510fn test() { (&S).foo()<|>; }
3511"#,
3512 );
3513 // This is also to make sure that we don't resolve to the foo method just
3514 // because that's the only method named foo we can find, which would make
3515 // the below tests not work
3516 assert_eq!(t, "{unknown}");
3517}
3518
3519#[test]
3520fn method_resolution_where_clause_inline_not_met() {
3521 // The blanket impl shouldn't apply because we can't prove S: Clone
3522 let t = type_at(
3523 r#"
3524//- /main.rs
3525trait Clone {}
3526trait Trait { fn foo(self) -> u128; }
3527struct S;
3528impl<T: Clone> Trait for T {}
3529fn test() { (&S).foo()<|>; }
3530"#,
3531 );
3532 assert_eq!(t, "{unknown}");
3533}
3534
3535#[test]
3536fn method_resolution_where_clause_1() {
3537 let t = type_at(
3538 r#"
3539//- /main.rs
3540trait Clone {}
3541trait Trait { fn foo(self) -> u128; }
3542struct S;
3543impl Clone for S {}
3544impl<T> Trait for T where T: Clone {}
3545fn test() { S.foo()<|>; }
3546"#,
3547 );
3548 assert_eq!(t, "u128");
3549}
3550
3551#[test]
3552fn method_resolution_where_clause_2() {
3553 let t = type_at(
3554 r#"
3555//- /main.rs
3556trait Into<T> { fn into(self) -> T; }
3557trait From<T> { fn from(other: T) -> Self; }
3558struct S1;
3559struct S2;
3560impl From<S2> for S1 {}
3561impl<T, U> Into<U> for T where U: From<T> {}
3562fn test() { S2.into()<|>; }
3563"#,
3564 );
3565 assert_eq!(t, "{unknown}");
3566}
3567
3568#[test]
3569fn method_resolution_where_clause_inline() {
3570 let t = type_at(
3571 r#"
3572//- /main.rs
3573trait Into<T> { fn into(self) -> T; }
3574trait From<T> { fn from(other: T) -> Self; }
3575struct S1;
3576struct S2;
3577impl From<S2> for S1 {}
3578impl<T, U: From<T>> Into<U> for T {}
3579fn test() { S2.into()<|>; }
3580"#,
3581 );
3582 assert_eq!(t, "{unknown}");
3583}
3584
3585#[test]
3586fn method_resolution_encountering_fn_type() {
3587 type_at(
3588 r#"
3589//- /main.rs
3590fn foo() {}
3591trait FnOnce { fn call(self); }
3592fn test() { foo.call()<|>; }
3593"#,
3594 );
3595}
3596
3597#[test]
3598fn method_resolution_slow() {
3599 // this can get quite slow if we set the solver size limit too high
3600 let t = type_at(
3601 r#"
3602//- /main.rs
3603trait SendX {}
3604
3605struct S1; impl SendX for S1 {}
3606struct S2; impl SendX for S2 {}
3607struct U1;
3608
3609trait Trait { fn method(self); }
3610
3611struct X1<A, B> {}
3612impl<A, B> SendX for X1<A, B> where A: SendX, B: SendX {}
3613
3614struct S<B, C> {}
3615
3616trait FnX {}
3617
3618impl<B, C> Trait for S<B, C> where C: FnX, B: SendX {}
3619
3620fn test() { (S {}).method()<|>; }
3621"#,
3622 );
3623 assert_eq!(t, "()");
3624}
3625
3626#[test]
3627fn shadowing_primitive() {
3628 let t = type_at(
3629 r#"
3630//- /main.rs
3631struct i32;
3632struct Foo;
3633
3634impl i32 { fn foo(&self) -> Foo { Foo } }
3635
3636fn main() {
3637 let x: i32 = i32;
3638 x.foo()<|>;
3639}"#,
3640 );
3641 assert_eq!(t, "Foo");
3642}
3643
3644#[test]
3645fn deref_trait() {
3646 let t = type_at(
3647 r#"
3648//- /main.rs
3649#[lang = "deref"]
3650trait Deref {
3651 type Target;
3652 fn deref(&self) -> &Self::Target;
3653}
3654
3655struct Arc<T>;
3656impl<T> Deref for Arc<T> {
3657 type Target = T;
3658}
3659
3660struct S;
3661impl S {
3662 fn foo(&self) -> u128 {}
3663}
3664
3665fn test(s: Arc<S>) {
3666 (*s, s.foo())<|>;
3667}
3668"#,
3669 );
3670 assert_eq!(t, "(S, u128)");
3671}
3672
3673#[test]
3674fn deref_trait_with_inference_var() {
3675 let t = type_at(
3676 r#"
3677//- /main.rs
3678#[lang = "deref"]
3679trait Deref {
3680 type Target;
3681 fn deref(&self) -> &Self::Target;
3682}
3683
3684struct Arc<T>;
3685fn new_arc<T>() -> Arc<T> {}
3686impl<T> Deref for Arc<T> {
3687 type Target = T;
3688}
3689
3690struct S;
3691fn foo(a: Arc<S>) {}
3692
3693fn test() {
3694 let a = new_arc();
3695 let b = (*a)<|>;
3696 foo(a);
3697}
3698"#,
3699 );
3700 assert_eq!(t, "S");
3701}
3702
3703#[test]
3704fn deref_trait_infinite_recursion() {
3705 let t = type_at(
3706 r#"
3707//- /main.rs
3708#[lang = "deref"]
3709trait Deref {
3710 type Target;
3711 fn deref(&self) -> &Self::Target;
3712}
3713
3714struct S;
3715
3716impl Deref for S {
3717 type Target = S;
3718}
3719
3720fn test(s: S) {
3721 s.foo()<|>;
3722}
3723"#,
3724 );
3725 assert_eq!(t, "{unknown}");
3726}
3727
3728#[test]
3729fn deref_trait_with_question_mark_size() {
3730 let t = type_at(
3731 r#"
3732//- /main.rs
3733#[lang = "deref"]
3734trait Deref {
3735 type Target;
3736 fn deref(&self) -> &Self::Target;
3737}
3738
3739struct Arc<T>;
3740impl<T> Deref for Arc<T> {
3741 type Target = T;
3742}
3743
3744struct S;
3745impl S {
3746 fn foo(&self) -> u128 {}
3747}
3748
3749fn test(s: Arc<S>) {
3750 (*s, s.foo())<|>;
3751}
3752"#,
3753 );
3754 assert_eq!(t, "(S, u128)");
3755}
3756
3757#[test]
3758fn obligation_from_function_clause() {
3759 let t = type_at(
3760 r#"
3761//- /main.rs
3762struct S;
3763
3764trait Trait<T> {}
3765impl Trait<u32> for S {}
3766
3767fn foo<T: Trait<U>, U>(t: T) -> U {}
3768
3769fn test(s: S) {
3770 foo(s)<|>;
3771}
3772"#,
3773 );
3774 assert_eq!(t, "u32");
3775}
3776
3777#[test]
3778fn obligation_from_method_clause() {
3779 let t = type_at(
3780 r#"
3781//- /main.rs
3782struct S;
3783
3784trait Trait<T> {}
3785impl Trait<isize> for S {}
3786
3787struct O;
3788impl O {
3789 fn foo<T: Trait<U>, U>(&self, t: T) -> U {}
3790}
3791
3792fn test() {
3793 O.foo(S)<|>;
3794}
3795"#,
3796 );
3797 assert_eq!(t, "isize");
3798}
3799
3800#[test]
3801fn obligation_from_self_method_clause() {
3802 let t = type_at(
3803 r#"
3804//- /main.rs
3805struct S;
3806
3807trait Trait<T> {}
3808impl Trait<i64> for S {}
3809
3810impl S {
3811 fn foo<U>(&self) -> U where Self: Trait<U> {}
3812}
3813
3814fn test() {
3815 S.foo()<|>;
3816}
3817"#,
3818 );
3819 assert_eq!(t, "i64");
3820}
3821
3822#[test]
3823fn obligation_from_impl_clause() {
3824 let t = type_at(
3825 r#"
3826//- /main.rs
3827struct S;
3828
3829trait Trait<T> {}
3830impl Trait<&str> for S {}
3831
3832struct O<T>;
3833impl<U, T: Trait<U>> O<T> {
3834 fn foo(&self) -> U {}
3835}
3836
3837fn test(o: O<S>) {
3838 o.foo()<|>;
3839}
3840"#,
3841 );
3842 assert_eq!(t, "&str");
3843}
3844
3845#[test]
3846fn generic_param_env_1() {
3847 let t = type_at(
3848 r#"
3849//- /main.rs
3850trait Clone {}
3851trait Trait { fn foo(self) -> u128; }
3852struct S;
3853impl Clone for S {}
3854impl<T> Trait for T where T: Clone {}
3855fn test<T: Clone>(t: T) { t.foo()<|>; }
3856"#,
3857 );
3858 assert_eq!(t, "u128");
3859}
3860
3861#[test]
3862fn generic_param_env_1_not_met() {
3863 let t = type_at(
3864 r#"
3865//- /main.rs
3866trait Clone {}
3867trait Trait { fn foo(self) -> u128; }
3868struct S;
3869impl Clone for S {}
3870impl<T> Trait for T where T: Clone {}
3871fn test<T>(t: T) { t.foo()<|>; }
3872"#,
3873 );
3874 assert_eq!(t, "{unknown}");
3875}
3876
3877#[test]
3878fn generic_param_env_2() {
3879 let t = type_at(
3880 r#"
3881//- /main.rs
3882trait Trait { fn foo(self) -> u128; }
3883struct S;
3884impl Trait for S {}
3885fn test<T: Trait>(t: T) { t.foo()<|>; }
3886"#,
3887 );
3888 assert_eq!(t, "u128");
3889}
3890
3891#[test]
3892fn generic_param_env_2_not_met() {
3893 let t = type_at(
3894 r#"
3895//- /main.rs
3896trait Trait { fn foo(self) -> u128; }
3897struct S;
3898impl Trait for S {}
3899fn test<T>(t: T) { t.foo()<|>; }
3900"#,
3901 );
3902 assert_eq!(t, "{unknown}");
3903}
3904
3905#[test]
3906fn generic_param_env_deref() {
3907 let t = type_at(
3908 r#"
3909//- /main.rs
3910#[lang = "deref"]
3911trait Deref {
3912 type Target;
3913}
3914trait Trait {}
3915impl<T> Deref for T where T: Trait {
3916 type Target = i128;
3917}
3918fn test<T: Trait>(t: T) { (*t)<|>; }
3919"#,
3920 );
3921 assert_eq!(t, "i128");
3922}
3923
3924#[test]
3925fn associated_type_placeholder() {
3926 let t = type_at(
3927 r#"
3928//- /main.rs
3929pub trait ApplyL {
3930 type Out;
3931}
3932
3933pub struct RefMutL<T>;
3934
3935impl<T> ApplyL for RefMutL<T> {
3936 type Out = <T as ApplyL>::Out;
3937}
3938
3939fn test<T: ApplyL>() {
3940 let y: <RefMutL<T> as ApplyL>::Out = no_matter;
3941 y<|>;
3942}
3943"#,
3944 );
3945 // inside the generic function, the associated type gets normalized to a placeholder `ApplL::Out<T>` [https://rust-lang.github.io/rustc-guide/traits/associated-types.html#placeholder-associated-types].
3946 // FIXME: fix type parameter names going missing when going through Chalk
3947 assert_eq!(t, "ApplyL::Out<[missing name]>");
3948}
3949
3950#[test]
3951fn associated_type_placeholder_2() {
3952 let t = type_at(
3953 r#"
3954//- /main.rs
3955pub trait ApplyL {
3956 type Out;
3957}
3958fn foo<T: ApplyL>(t: T) -> <T as ApplyL>::Out;
3959
3960fn test<T: ApplyL>(t: T) {
3961 let y = foo(t);
3962 y<|>;
3963}
3964"#,
3965 );
3966 // FIXME here Chalk doesn't normalize the type to a placeholder. I think we
3967 // need to add a rule like Normalize(<T as ApplyL>::Out -> ApplyL::Out<T>)
3968 // to the trait env ourselves here; probably Chalk can't do this by itself.
3969 // assert_eq!(t, "ApplyL::Out<[missing name]>");
3970 assert_eq!(t, "{unknown}");
3971}
3972
3973#[test]
3974fn impl_trait() {
3975 assert_snapshot!(
3976 infer(r#"
3977trait Trait<T> {
3978 fn foo(&self) -> T;
3979 fn foo2(&self) -> i64;
3980}
3981fn bar() -> impl Trait<u64> {}
3982
3983fn test(x: impl Trait<u64>, y: &impl Trait<u64>) {
3984 x;
3985 y;
3986 let z = bar();
3987 x.foo();
3988 y.foo();
3989 z.foo();
3990 x.foo2();
3991 y.foo2();
3992 z.foo2();
3993}
3994"#),
3995 @r###"
3996 [30; 34) 'self': &Self
3997 [55; 59) 'self': &Self
3998 [99; 101) '{}': ()
3999 [111; 112) 'x': impl Trait<u64>
4000 [131; 132) 'y': &impl Trait<u64>
4001 [152; 269) '{ ...2(); }': ()
4002 [158; 159) 'x': impl Trait<u64>
4003 [165; 166) 'y': &impl Trait<u64>
4004 [176; 177) 'z': impl Trait<u64>
4005 [180; 183) 'bar': fn bar() -> impl Trait<u64>
4006 [180; 185) 'bar()': impl Trait<u64>
4007 [191; 192) 'x': impl Trait<u64>
4008 [191; 198) 'x.foo()': u64
4009 [204; 205) 'y': &impl Trait<u64>
4010 [204; 211) 'y.foo()': u64
4011 [217; 218) 'z': impl Trait<u64>
4012 [217; 224) 'z.foo()': u64
4013 [230; 231) 'x': impl Trait<u64>
4014 [230; 238) 'x.foo2()': i64
4015 [244; 245) 'y': &impl Trait<u64>
4016 [244; 252) 'y.foo2()': i64
4017 [258; 259) 'z': impl Trait<u64>
4018 [258; 266) 'z.foo2()': i64
4019 "###
4020 );
4021}
4022
4023#[test]
4024fn dyn_trait() {
4025 assert_snapshot!(
4026 infer(r#"
4027trait Trait<T> {
4028 fn foo(&self) -> T;
4029 fn foo2(&self) -> i64;
4030}
4031fn bar() -> dyn Trait<u64> {}
4032
4033fn test(x: dyn Trait<u64>, y: &dyn Trait<u64>) {
4034 x;
4035 y;
4036 let z = bar();
4037 x.foo();
4038 y.foo();
4039 z.foo();
4040 x.foo2();
4041 y.foo2();
4042 z.foo2();
4043}
4044"#),
4045 @r###"
4046 [30; 34) 'self': &Self
4047 [55; 59) 'self': &Self
4048 [98; 100) '{}': ()
4049 [110; 111) 'x': dyn Trait<u64>
4050 [129; 130) 'y': &dyn Trait<u64>
4051 [149; 266) '{ ...2(); }': ()
4052 [155; 156) 'x': dyn Trait<u64>
4053 [162; 163) 'y': &dyn Trait<u64>
4054 [173; 174) 'z': dyn Trait<u64>
4055 [177; 180) 'bar': fn bar() -> dyn Trait<u64>
4056 [177; 182) 'bar()': dyn Trait<u64>
4057 [188; 189) 'x': dyn Trait<u64>
4058 [188; 195) 'x.foo()': u64
4059 [201; 202) 'y': &dyn Trait<u64>
4060 [201; 208) 'y.foo()': u64
4061 [214; 215) 'z': dyn Trait<u64>
4062 [214; 221) 'z.foo()': u64
4063 [227; 228) 'x': dyn Trait<u64>
4064 [227; 235) 'x.foo2()': i64
4065 [241; 242) 'y': &dyn Trait<u64>
4066 [241; 249) 'y.foo2()': i64
4067 [255; 256) 'z': dyn Trait<u64>
4068 [255; 263) 'z.foo2()': i64
4069 "###
4070 );
4071}
4072
4073#[test]
4074fn dyn_trait_bare() {
4075 assert_snapshot!(
4076 infer(r#"
4077trait Trait {
4078 fn foo(&self) -> u64;
4079}
4080fn bar() -> Trait {}
4081
4082fn test(x: Trait, y: &Trait) -> u64 {
4083 x;
4084 y;
4085 let z = bar();
4086 x.foo();
4087 y.foo();
4088 z.foo();
4089}
4090"#),
4091 @r###"
4092 [27; 31) 'self': &Self
4093 [61; 63) '{}': ()
4094 [73; 74) 'x': dyn Trait
4095 [83; 84) 'y': &dyn Trait
4096 [101; 176) '{ ...o(); }': ()
4097 [107; 108) 'x': dyn Trait
4098 [114; 115) 'y': &dyn Trait
4099 [125; 126) 'z': dyn Trait
4100 [129; 132) 'bar': fn bar() -> dyn Trait
4101 [129; 134) 'bar()': dyn Trait
4102 [140; 141) 'x': dyn Trait
4103 [140; 147) 'x.foo()': u64
4104 [153; 154) 'y': &dyn Trait
4105 [153; 160) 'y.foo()': u64
4106 [166; 167) 'z': dyn Trait
4107 [166; 173) 'z.foo()': u64
4108 "###
4109 );
4110}
4111
4112#[test]
4113fn weird_bounds() {
4114 assert_snapshot!(
4115 infer(r#"
4116trait Trait {}
4117fn test() {
4118 let a: impl Trait + 'lifetime = foo;
4119 let b: impl 'lifetime = foo;
4120 let b: impl (Trait) = foo;
4121 let b: impl ('lifetime) = foo;
4122 let d: impl ?Sized = foo;
4123 let e: impl Trait + ?Sized = foo;
4124}
4125"#),
4126 @r###"
4127 [26; 237) '{ ...foo; }': ()
4128 [36; 37) 'a': impl Trait + {error}
4129 [64; 67) 'foo': impl Trait + {error}
4130 [77; 78) 'b': impl {error}
4131 [97; 100) 'foo': impl {error}
4132 [110; 111) 'b': impl Trait
4133 [128; 131) 'foo': impl Trait
4134 [141; 142) 'b': impl {error}
4135 [163; 166) 'foo': impl {error}
4136 [176; 177) 'd': impl {error}
4137 [193; 196) 'foo': impl {error}
4138 [206; 207) 'e': impl Trait + {error}
4139 [231; 234) 'foo': impl Trait + {error}
4140 "###
4141 );
4142}
4143
4144#[test]
4145fn assoc_type_bindings() {
4146 assert_snapshot!(
4147 infer(r#"
4148trait Trait {
4149 type Type;
4150}
4151
4152fn get<T: Trait>(t: T) -> <T as Trait>::Type {}
4153fn get2<U, T: Trait<Type = U>>(t: T) -> U {}
4154fn set<T: Trait<Type = u64>>(t: T) -> T {t}
4155
4156struct S<T>;
4157impl<T> Trait for S<T> { type Type = T; }
4158
4159fn test<T: Trait<Type = u32>>(x: T, y: impl Trait<Type = i64>) {
4160 get(x);
4161 get2(x);
4162 get(y);
4163 get2(y);
4164 get(set(S));
4165 get2(set(S));
4166 get2(S::<str>);
4167}
4168"#),
4169 @r###"
4170 [50; 51) 't': T
4171 [78; 80) '{}': ()
4172 [112; 113) 't': T
4173 [123; 125) '{}': ()
4174 [155; 156) 't': T
4175 [166; 169) '{t}': T
4176 [167; 168) 't': T
4177 [257; 258) 'x': T
4178 [263; 264) 'y': impl Trait<Type = i64>
4179 [290; 398) '{ ...r>); }': ()
4180 [296; 299) 'get': fn get<T>(T) -> <T as Trait>::Type
4181 [296; 302) 'get(x)': {unknown}
4182 [300; 301) 'x': T
4183 [308; 312) 'get2': fn get2<{unknown}, T>(T) -> U
4184 [308; 315) 'get2(x)': {unknown}
4185 [313; 314) 'x': T
4186 [321; 324) 'get': fn get<impl Trait<Type = i64>>(T) -> <T as Trait>::Type
4187 [321; 327) 'get(y)': {unknown}
4188 [325; 326) 'y': impl Trait<Type = i64>
4189 [333; 337) 'get2': fn get2<{unknown}, impl Trait<Type = i64>>(T) -> U
4190 [333; 340) 'get2(y)': {unknown}
4191 [338; 339) 'y': impl Trait<Type = i64>
4192 [346; 349) 'get': fn get<S<u64>>(T) -> <T as Trait>::Type
4193 [346; 357) 'get(set(S))': u64
4194 [350; 353) 'set': fn set<S<u64>>(T) -> T
4195 [350; 356) 'set(S)': S<u64>
4196 [354; 355) 'S': S<u64>
4197 [363; 367) 'get2': fn get2<u64, S<u64>>(T) -> U
4198 [363; 375) 'get2(set(S))': u64
4199 [368; 371) 'set': fn set<S<u64>>(T) -> T
4200 [368; 374) 'set(S)': S<u64>
4201 [372; 373) 'S': S<u64>
4202 [381; 385) 'get2': fn get2<str, S<str>>(T) -> U
4203 [381; 395) 'get2(S::<str>)': str
4204 [386; 394) 'S::<str>': S<str>
4205 "###
4206 );
4207}
4208
4209#[test]
4210fn impl_trait_assoc_binding_projection_bug() {
4211 let (db, pos) = TestDB::with_position(
4212 r#"
4213//- /main.rs crate:main deps:std
4214pub trait Language {
4215 type Kind;
4216}
4217pub enum RustLanguage {}
4218impl Language for RustLanguage {
4219 type Kind = SyntaxKind;
4220}
4221struct SyntaxNode<L> {}
4222fn foo() -> impl Iterator<Item = SyntaxNode<RustLanguage>> {}
4223
4224trait Clone {
4225 fn clone(&self) -> Self;
4226}
4227
4228fn api_walkthrough() {
4229 for node in foo() {
4230 node.clone()<|>;
4231 }
4232}
4233
4234//- /std.rs crate:std
4235#[prelude_import] use iter::*;
4236mod iter {
4237 trait IntoIterator {
4238 type Item;
4239 }
4240 trait Iterator {
4241 type Item;
4242 }
4243 impl<T: Iterator> IntoIterator for T {
4244 type Item = <T as Iterator>::Item;
4245 }
4246}
4247"#,
4248 );
4249 assert_eq!("{unknown}", type_at_pos(&db, pos));
4250}
4251
4252#[test]
4253fn projection_eq_within_chalk() {
4254 // std::env::set_var("CHALK_DEBUG", "1");
4255 assert_snapshot!(
4256 infer(r#"
4257trait Trait1 {
4258 type Type;
4259}
4260trait Trait2<T> {
4261 fn foo(self) -> T;
4262}
4263impl<T, U> Trait2<T> for U where U: Trait1<Type = T> {}
4264
4265fn test<T: Trait1<Type = u32>>(x: T) {
4266 x.foo();
4267}
4268"#),
4269 @r###"
4270 [62; 66) 'self': Self
4271 [164; 165) 'x': T
4272 [170; 186) '{ ...o(); }': ()
4273 [176; 177) 'x': T
4274 [176; 183) 'x.foo()': {unknown}
4275 "###
4276 );
4277}
4278
4279#[test]
4280fn where_clause_trait_in_scope_for_method_resolution() {
4281 let t = type_at(
4282 r#"
4283//- /main.rs
4284mod foo {
4285 trait Trait {
4286 fn foo(&self) -> u32 {}
4287 }
4288}
4289
4290fn test<T: foo::Trait>(x: T) {
4291 x.foo()<|>;
4292}
4293"#,
4294 );
4295 assert_eq!(t, "u32");
4296}
4297
4298#[test]
4299fn super_trait_method_resolution() {
4300 assert_snapshot!(
4301 infer(r#"
4302mod foo {
4303 trait SuperTrait {
4304 fn foo(&self) -> u32 {}
4305 }
4306}
4307trait Trait1: foo::SuperTrait {}
4308trait Trait2 where Self: foo::SuperTrait {}
4309
4310fn test<T: Trait1, U: Trait2>(x: T, y: U) {
4311 x.foo();
4312 y.foo();
4313}
4314"#),
4315 @r###"
4316 [50; 54) 'self': &Self
4317 [63; 65) '{}': ()
4318 [182; 183) 'x': T
4319 [188; 189) 'y': U
4320 [194; 223) '{ ...o(); }': ()
4321 [200; 201) 'x': T
4322 [200; 207) 'x.foo()': u32
4323 [213; 214) 'y': U
4324 [213; 220) 'y.foo()': u32
4325 "###
4326 );
4327}
4328
4329#[test]
4330fn super_trait_cycle() {
4331 // This just needs to not crash
4332 assert_snapshot!(
4333 infer(r#"
4334trait A: B {}
4335trait B: A {}
4336
4337fn test<T: A>(x: T) {
4338 x.foo();
4339}
4340"#),
4341 @r###"
4342 [44; 45) 'x': T
4343 [50; 66) '{ ...o(); }': ()
4344 [56; 57) 'x': T
4345 [56; 63) 'x.foo()': {unknown}
4346 "###
4347 );
4348}
4349
4350#[test]
4351fn super_trait_assoc_type_bounds() {
4352 assert_snapshot!(
4353 infer(r#"
4354trait SuperTrait { type Type; }
4355trait Trait where Self: SuperTrait {}
4356
4357fn get2<U, T: Trait<Type = U>>(t: T) -> U {}
4358fn set<T: Trait<Type = u64>>(t: T) -> T {t}
4359
4360struct S<T>;
4361impl<T> SuperTrait for S<T> { type Type = T; }
4362impl<T> Trait for S<T> {}
4363
4364fn test() {
4365 get2(set(S));
4366}
4367"#),
4368 @r###"
4369 [103; 104) 't': T
4370 [114; 116) '{}': ()
4371 [146; 147) 't': T
4372 [157; 160) '{t}': T
4373 [158; 159) 't': T
4374 [259; 280) '{ ...S)); }': ()
4375 [265; 269) 'get2': fn get2<u64, S<u64>>(T) -> U
4376 [265; 277) 'get2(set(S))': u64
4377 [270; 273) 'set': fn set<S<u64>>(T) -> T
4378 [270; 276) 'set(S)': S<u64>
4379 [274; 275) 'S': S<u64>
4380 "###
4381 );
4382}
4383
4384#[test]
4385fn fn_trait() {
4386 assert_snapshot!(
4387 infer(r#"
4388trait FnOnce<Args> {
4389 type Output;
4390
4391 fn call_once(self, args: Args) -> <Self as FnOnce<Args>>::Output;
4392}
4393
4394fn test<F: FnOnce(u32, u64) -> u128>(f: F) {
4395 f.call_once((1, 2));
4396}
4397"#),
4398 @r###"
4399 [57; 61) 'self': Self
4400 [63; 67) 'args': Args
4401 [150; 151) 'f': F
4402 [156; 184) '{ ...2)); }': ()
4403 [162; 163) 'f': F
4404 [162; 181) 'f.call...1, 2))': {unknown}
4405 [174; 180) '(1, 2)': (u32, u64)
4406 [175; 176) '1': u32
4407 [178; 179) '2': u64
4408 "###
4409 );
4410}
4411
4412#[test]
4413fn closure_1() {
4414 assert_snapshot!(
4415 infer(r#"
4416#[lang = "fn_once"]
4417trait FnOnce<Args> {
4418 type Output;
4419}
4420
4421enum Option<T> { Some(T), None }
4422impl<T> Option<T> {
4423 fn map<U, F: FnOnce(T) -> U>(self, f: F) -> Option<U> {}
4424}
4425
4426fn test() {
4427 let x = Option::Some(1u32);
4428 x.map(|v| v + 1);
4429 x.map(|_v| 1u64);
4430 let y: Option<i64> = x.map(|_v| 1);
4431}
4432"#),
4433 @r###"
4434 [148; 152) 'self': Option<T>
4435 [154; 155) 'f': F
4436 [173; 175) '{}': ()
4437 [189; 308) '{ ... 1); }': ()
4438 [199; 200) 'x': Option<u32>
4439 [203; 215) 'Option::Some': Some<u32>(T) -> Option<T>
4440 [203; 221) 'Option...(1u32)': Option<u32>
4441 [216; 220) '1u32': u32
4442 [227; 228) 'x': Option<u32>
4443 [227; 243) 'x.map(...v + 1)': Option<u32>
4444 [233; 242) '|v| v + 1': |u32| -> u32
4445 [234; 235) 'v': u32
4446 [237; 238) 'v': u32
4447 [237; 242) 'v + 1': u32
4448 [241; 242) '1': u32
4449 [249; 250) 'x': Option<u32>
4450 [249; 265) 'x.map(... 1u64)': Option<u64>
4451 [255; 264) '|_v| 1u64': |u32| -> u64
4452 [256; 258) '_v': u32
4453 [260; 264) '1u64': u64
4454 [275; 276) 'y': Option<i64>
4455 [292; 293) 'x': Option<u32>
4456 [292; 305) 'x.map(|_v| 1)': Option<i64>
4457 [298; 304) '|_v| 1': |u32| -> i64
4458 [299; 301) '_v': u32
4459 [303; 304) '1': i64
4460 "###
4461 );
4462}
4463
4464#[test]
4465fn closure_2() {
4466 assert_snapshot!(
4467 infer(r#"
4468trait FnOnce<Args> {
4469 type Output;
4470}
4471
4472fn test<F: FnOnce(u32) -> u64>(f: F) {
4473 f(1);
4474 let g = |v| v + 1;
4475 g(1u64);
4476 let h = |v| 1u128 + v;
4477}
4478"#),
4479 @r###"
4480 [73; 74) 'f': F
4481 [79; 155) '{ ...+ v; }': ()
4482 [85; 86) 'f': F
4483 [85; 89) 'f(1)': {unknown}
4484 [87; 88) '1': i32
4485 [99; 100) 'g': |u64| -> i32
4486 [103; 112) '|v| v + 1': |u64| -> i32
4487 [104; 105) 'v': u64
4488 [107; 108) 'v': u64
4489 [107; 112) 'v + 1': i32
4490 [111; 112) '1': i32
4491 [118; 119) 'g': |u64| -> i32
4492 [118; 125) 'g(1u64)': i32
4493 [120; 124) '1u64': u64
4494 [135; 136) 'h': |u128| -> u128
4495 [139; 152) '|v| 1u128 + v': |u128| -> u128
4496 [140; 141) 'v': u128
4497 [143; 148) '1u128': u128
4498 [143; 152) '1u128 + v': u128
4499 [151; 152) 'v': u128
4500 "###
4501 );
4502}
4503
4504#[test]
4505fn closure_as_argument_inference_order() {
4506 assert_snapshot!(
4507 infer(r#"
4508#[lang = "fn_once"]
4509trait FnOnce<Args> {
4510 type Output;
4511}
4512
4513fn foo1<T, U, F: FnOnce(T) -> U>(x: T, f: F) -> U {}
4514fn foo2<T, U, F: FnOnce(T) -> U>(f: F, x: T) -> U {}
4515
4516struct S;
4517impl S {
4518 fn method(self) -> u64;
4519
4520 fn foo1<T, U, F: FnOnce(T) -> U>(self, x: T, f: F) -> U {}
4521 fn foo2<T, U, F: FnOnce(T) -> U>(self, f: F, x: T) -> U {}
4522}
4523
4524fn test() {
4525 let x1 = foo1(S, |s| s.method());
4526 let x2 = foo2(|s| s.method(), S);
4527 let x3 = S.foo1(S, |s| s.method());
4528 let x4 = S.foo2(|s| s.method(), S);
4529}
4530"#),
4531 @r###"
4532 [95; 96) 'x': T
4533 [101; 102) 'f': F
4534 [112; 114) '{}': ()
4535 [148; 149) 'f': F
4536 [154; 155) 'x': T
4537 [165; 167) '{}': ()
4538 [202; 206) 'self': S
4539 [254; 258) 'self': S
4540 [260; 261) 'x': T
4541 [266; 267) 'f': F
4542 [277; 279) '{}': ()
4543 [317; 321) 'self': S
4544 [323; 324) 'f': F
4545 [329; 330) 'x': T
4546 [340; 342) '{}': ()
4547 [356; 515) '{ ... S); }': ()
4548 [366; 368) 'x1': u64
4549 [371; 375) 'foo1': fn foo1<S, u64, |S| -> u64>(T, F) -> U
4550 [371; 394) 'foo1(S...hod())': u64
4551 [376; 377) 'S': S
4552 [379; 393) '|s| s.method()': |S| -> u64
4553 [380; 381) 's': S
4554 [383; 384) 's': S
4555 [383; 393) 's.method()': u64
4556 [404; 406) 'x2': u64
4557 [409; 413) 'foo2': fn foo2<S, u64, |S| -> u64>(F, T) -> U
4558 [409; 432) 'foo2(|...(), S)': u64
4559 [414; 428) '|s| s.method()': |S| -> u64
4560 [415; 416) 's': S
4561 [418; 419) 's': S
4562 [418; 428) 's.method()': u64
4563 [430; 431) 'S': S
4564 [442; 444) 'x3': u64
4565 [447; 448) 'S': S
4566 [447; 472) 'S.foo1...hod())': u64
4567 [454; 455) 'S': S
4568 [457; 471) '|s| s.method()': |S| -> u64
4569 [458; 459) 's': S
4570 [461; 462) 's': S
4571 [461; 471) 's.method()': u64
4572 [482; 484) 'x4': u64
4573 [487; 488) 'S': S
4574 [487; 512) 'S.foo2...(), S)': u64
4575 [494; 508) '|s| s.method()': |S| -> u64
4576 [495; 496) 's': S
4577 [498; 499) 's': S
4578 [498; 508) 's.method()': u64
4579 [510; 511) 'S': S
4580 "###
4581 );
4582}
4583
4584#[test]
4585fn unselected_projection_in_trait_env_1() {
4586 let t = type_at(
4587 r#"
4588//- /main.rs
4589trait Trait {
4590 type Item;
4591}
4592
4593trait Trait2 {
4594 fn foo(&self) -> u32;
4595}
4596
4597fn test<T: Trait>() where T::Item: Trait2 {
4598 let x: T::Item = no_matter;
4599 x.foo()<|>;
4600}
4601"#,
4602 );
4603 assert_eq!(t, "u32");
4604}
4605
4606#[test]
4607fn unselected_projection_in_trait_env_2() {
4608 let t = type_at(
4609 r#"
4610//- /main.rs
4611trait Trait<T> {
4612 type Item;
4613}
4614
4615trait Trait2 {
4616 fn foo(&self) -> u32;
4617}
4618
4619fn test<T, U>() where T::Item: Trait2, T: Trait<U::Item>, U: Trait<()> {
4620 let x: T::Item = no_matter;
4621 x.foo()<|>;
4622}
4623"#,
4624 );
4625 assert_eq!(t, "u32");
4626}
4627
4628#[test]
4629// FIXME this is currently a Salsa panic; it would be nicer if it just returned
4630// in Unknown, and we should be able to do that once Salsa allows us to handle
4631// the cycle. But at least it doesn't overflow for now.
4632#[should_panic]
4633fn unselected_projection_in_trait_env_cycle_1() {
4634 let t = type_at(
4635 r#"
4636//- /main.rs
4637trait Trait {
4638 type Item;
4639}
4640
4641trait Trait2<T> {}
4642
4643fn test<T: Trait>() where T: Trait2<T::Item> {
4644 let x: T::Item = no_matter<|>;
4645}
4646"#,
4647 );
4648 // this is a legitimate cycle
4649 assert_eq!(t, "{unknown}");
4650}
4651
4652#[test]
4653// FIXME this is currently a Salsa panic; it would be nicer if it just returned
4654// in Unknown, and we should be able to do that once Salsa allows us to handle
4655// the cycle. But at least it doesn't overflow for now.
4656#[should_panic]
4657fn unselected_projection_in_trait_env_cycle_2() {
4658 let t = type_at(
4659 r#"
4660//- /main.rs
4661trait Trait<T> {
4662 type Item;
4663}
4664
4665fn test<T, U>() where T: Trait<U::Item>, U: Trait<T::Item> {
4666 let x: T::Item = no_matter<|>;
4667}
4668"#,
4669 );
4670 // this is a legitimate cycle
4671 assert_eq!(t, "{unknown}");
4672}
4673
4674fn type_at_pos(db: &TestDB, pos: FilePosition) -> String {
4675 let file = db.parse(pos.file_id).ok().unwrap();
4676 let expr = algo::find_node_at_offset::<ast::Expr>(file.syntax(), pos.offset).unwrap();
4677 let analyzer =
4678 SourceAnalyzer::new(db, Source::new(pos.file_id.into(), expr.syntax()), Some(pos.offset));
4679 let ty = analyzer.type_of(db, &expr).unwrap();
4680 ty.display(db).to_string()
4681}
4682
4683fn type_at(content: &str) -> String {
4684 let (db, file_pos) = TestDB::with_position(content);
4685 type_at_pos(&db, file_pos)
4686}
4687
4688fn infer(content: &str) -> String {
4689 let (db, file_id) = TestDB::with_single_file(content);
4690 let source_file = db.parse(file_id).ok().unwrap();
4691
4692 let mut acc = String::new();
4693
4694 let mut infer_def = |inference_result: Arc<InferenceResult>,
4695 body_source_map: Arc<BodySourceMap>| {
4696 let mut types = Vec::new();
4697
4698 for (pat, ty) in inference_result.type_of_pat.iter() {
4699 let syntax_ptr = match body_source_map.pat_syntax(pat) {
4700 Some(sp) => {
4701 sp.map(|ast| ast.either(|it| it.syntax_node_ptr(), |it| it.syntax_node_ptr()))
4702 }
4703 None => continue,
4704 };
4705 types.push((syntax_ptr, ty));
4706 }
4707
4708 for (expr, ty) in inference_result.type_of_expr.iter() {
4709 let syntax_ptr = match body_source_map.expr_syntax(expr) {
4710 Some(sp) => {
4711 sp.map(|ast| ast.either(|it| it.syntax_node_ptr(), |it| it.syntax_node_ptr()))
4712 }
4713 None => continue,
4714 };
4715 types.push((syntax_ptr, ty));
4716 }
4717
4718 // sort ranges for consistency
4719 types.sort_by_key(|(src_ptr, _)| {
4720 (src_ptr.value.range().start(), src_ptr.value.range().end())
4721 });
4722 for (src_ptr, ty) in &types {
4723 let node = src_ptr.value.to_node(&src_ptr.file_syntax(&db));
4724
4725 let (range, text) = if let Some(self_param) = ast::SelfParam::cast(node.clone()) {
4726 (self_param.self_kw_token().text_range(), "self".to_string())
4727 } else {
4728 (src_ptr.value.range(), node.text().to_string().replace("\n", " "))
4729 };
4730 let macro_prefix = if src_ptr.file_id != file_id.into() { "!" } else { "" };
4731 write!(
4732 acc,
4733 "{}{} '{}': {}\n",
4734 macro_prefix,
4735 range,
4736 ellipsize(text, 15),
4737 ty.display(&db)
4738 )
4739 .unwrap();
4740 }
4741 };
4742
4743 let mut analyzed = FxHashSet::default();
4744 for node in source_file.syntax().descendants() {
4745 if node.kind() == FN_DEF || node.kind() == CONST_DEF || node.kind() == STATIC_DEF {
4746 let analyzer = SourceAnalyzer::new(&db, Source::new(file_id.into(), &node), None);
4747 if analyzed.insert(analyzer.analyzed_declaration()) {
4748 infer_def(analyzer.inference_result(), analyzer.body_source_map());
4749 }
4750 }
4751 }
4752
4753 acc.truncate(acc.trim_end().len());
4754 acc
4755}
4756
4757fn ellipsize(mut text: String, max_len: usize) -> String {
4758 if text.len() <= max_len {
4759 return text;
4760 }
4761 let ellipsis = "...";
4762 let e_len = ellipsis.len();
4763 let mut prefix_len = (max_len - e_len) / 2;
4764 while !text.is_char_boundary(prefix_len) {
4765 prefix_len += 1;
4766 }
4767 let mut suffix_len = max_len - e_len - prefix_len;
4768 while !text.is_char_boundary(text.len() - suffix_len) {
4769 suffix_len += 1;
4770 }
4771 text.replace_range(prefix_len..text.len() - suffix_len, ellipsis);
4772 text
4773}
4774
4775#[test]
4776fn typing_whitespace_inside_a_function_should_not_invalidate_types() {
4777 let (mut db, pos) = TestDB::with_position(
4778 "
4779 //- /lib.rs
4780 fn foo() -> i32 {
4781 <|>1 + 1
4782 }
4783 ",
4784 );
4785 {
4786 let file = db.parse(pos.file_id).ok().unwrap();
4787 let node = file.syntax().token_at_offset(pos.offset).right_biased().unwrap().parent();
4788 let events = db.log_executed(|| {
4789 SourceAnalyzer::new(&db, Source::new(pos.file_id.into(), &node), None);
4790 });
4791 assert!(format!("{:?}", events).contains("infer"))
4792 }
4793
4794 let new_text = "
4795 fn foo() -> i32 {
4796 1
4797 +
4798 1
4799 }
4800 "
4801 .to_string();
4802
4803 db.query_mut(ra_db::FileTextQuery).set(pos.file_id, Arc::new(new_text));
4804
4805 {
4806 let file = db.parse(pos.file_id).ok().unwrap();
4807 let node = file.syntax().token_at_offset(pos.offset).right_biased().unwrap().parent();
4808 let events = db.log_executed(|| {
4809 SourceAnalyzer::new(&db, Source::new(pos.file_id.into(), &node), None);
4810 });
4811 assert!(!format!("{:?}", events).contains("infer"), "{:#?}", events)
4812 }
4813}
4814
4815#[test]
4816fn no_such_field_diagnostics() {
4817 let diagnostics = TestDB::with_files(
4818 r"
4819 //- /lib.rs
4820 struct S { foo: i32, bar: () }
4821 impl S {
4822 fn new() -> S {
4823 S {
4824 foo: 92,
4825 baz: 62,
4826 }
4827 }
4828 }
4829 ",
4830 )
4831 .diagnostics();
4832
4833 assert_snapshot!(diagnostics, @r###"
4834 "baz: 62": no such field
4835 "{\n foo: 92,\n baz: 62,\n }": Missing structure fields:
4836 - bar
4837 "###
4838 );
4839}
4840
4841#[test]
4842fn infer_builtin_macros_line() {
4843 assert_snapshot!(
4844 infer(r#"
4845#[rustc_builtin_macro]
4846macro_rules! line {() => {}}
4847
4848fn main() {
4849 let x = line!();
4850}
4851"#),
4852 @r###"
4853 ![0; 1) '6': i32
4854 [64; 88) '{ ...!(); }': ()
4855 [74; 75) 'x': i32
4856 "###
4857 );
4858}
4859
4860#[test]
4861fn infer_builtin_macros_file() {
4862 assert_snapshot!(
4863 infer(r#"
4864#[rustc_builtin_macro]
4865macro_rules! file {() => {}}
4866
4867fn main() {
4868 let x = file!();
4869}
4870"#),
4871 @r###"
4872 ![0; 2) '""': &str
4873 [64; 88) '{ ...!(); }': ()
4874 [74; 75) 'x': &str
4875 "###
4876 );
4877}
4878
4879#[test]
4880fn infer_builtin_macros_column() {
4881 assert_snapshot!(
4882 infer(r#"
4883#[rustc_builtin_macro]
4884macro_rules! column {() => {}}
4885
4886fn main() {
4887 let x = column!();
4888}
4889"#),
4890 @r###"
4891 ![0; 2) '13': i32
4892 [66; 92) '{ ...!(); }': ()
4893 [76; 77) 'x': i32
4894 "###
4895 );
4896}
diff --git a/crates/ra_hir/src/ty/tests/coercion.rs b/crates/ra_hir/src/ty/tests/coercion.rs
deleted file mode 100644
index 1530fcc63..000000000
--- a/crates/ra_hir/src/ty/tests/coercion.rs
+++ /dev/null
@@ -1,369 +0,0 @@
1use insta::assert_snapshot;
2use test_utils::covers;
3
4// Infer with some common definitions and impls.
5fn infer(source: &str) -> String {
6 let defs = r#"
7 #[lang = "sized"]
8 pub trait Sized {}
9 #[lang = "unsize"]
10 pub trait Unsize<T: ?Sized> {}
11 #[lang = "coerce_unsized"]
12 pub trait CoerceUnsized<T> {}
13
14 impl<'a, 'b: 'a, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<&'a U> for &'b T {}
15 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<*mut U> for *mut T {}
16 "#;
17
18 // Append to the end to keep positions unchanged.
19 super::infer(&format!("{}{}", source, defs))
20}
21
22#[test]
23fn infer_block_expr_type_mismatch() {
24 assert_snapshot!(
25 infer(r#"
26fn test() {
27 let a: i32 = { 1i64 };
28}
29"#),
30 @r###"
31 [11; 41) '{ ...4 }; }': ()
32 [21; 22) 'a': i32
33 [30; 38) '{ 1i64 }': i64
34 [32; 36) '1i64': i64
35 "###);
36}
37
38#[test]
39fn coerce_places() {
40 assert_snapshot!(
41 infer(r#"
42struct S<T> { a: T }
43
44fn f<T>(_: &[T]) -> T { loop {} }
45fn g<T>(_: S<&[T]>) -> T { loop {} }
46
47fn gen<T>() -> *mut [T; 2] { loop {} }
48fn test1<U>() -> *mut [U] {
49 gen()
50}
51
52fn test2() {
53 let arr: &[u8; 1] = &[1];
54
55 let a: &[_] = arr;
56 let b = f(arr);
57 let c: &[_] = { arr };
58 let d = g(S { a: arr });
59 let e: [&[_]; 1] = [arr];
60 let f: [&[_]; 2] = [arr; 2];
61 let g: (&[_], &[_]) = (arr, arr);
62}
63"#),
64 @r###"
65 [31; 32) '_': &[T]
66 [45; 56) '{ loop {} }': T
67 [47; 54) 'loop {}': !
68 [52; 54) '{}': ()
69 [65; 66) '_': S<&[T]>
70 [82; 93) '{ loop {} }': T
71 [84; 91) 'loop {}': !
72 [89; 91) '{}': ()
73 [122; 133) '{ loop {} }': *mut [T;_]
74 [124; 131) 'loop {}': !
75 [129; 131) '{}': ()
76 [160; 173) '{ gen() }': *mut [U]
77 [166; 169) 'gen': fn gen<U>() -> *mut [T;_]
78 [166; 171) 'gen()': *mut [U;_]
79 [186; 420) '{ ...rr); }': ()
80 [196; 199) 'arr': &[u8;_]
81 [212; 216) '&[1]': &[u8;_]
82 [213; 216) '[1]': [u8;_]
83 [214; 215) '1': u8
84 [227; 228) 'a': &[u8]
85 [237; 240) 'arr': &[u8;_]
86 [250; 251) 'b': u8
87 [254; 255) 'f': fn f<u8>(&[T]) -> T
88 [254; 260) 'f(arr)': u8
89 [256; 259) 'arr': &[u8;_]
90 [270; 271) 'c': &[u8]
91 [280; 287) '{ arr }': &[u8]
92 [282; 285) 'arr': &[u8;_]
93 [297; 298) 'd': u8
94 [301; 302) 'g': fn g<u8>(S<&[T]>) -> T
95 [301; 316) 'g(S { a: arr })': u8
96 [303; 315) 'S { a: arr }': S<&[u8]>
97 [310; 313) 'arr': &[u8;_]
98 [326; 327) 'e': [&[u8];_]
99 [341; 346) '[arr]': [&[u8];_]
100 [342; 345) 'arr': &[u8;_]
101 [356; 357) 'f': [&[u8];_]
102 [371; 379) '[arr; 2]': [&[u8];_]
103 [372; 375) 'arr': &[u8;_]
104 [377; 378) '2': usize
105 [389; 390) 'g': (&[u8], &[u8])
106 [407; 417) '(arr, arr)': (&[u8], &[u8])
107 [408; 411) 'arr': &[u8;_]
108 [413; 416) 'arr': &[u8;_]
109 "###
110 );
111}
112
113#[test]
114fn infer_let_stmt_coerce() {
115 assert_snapshot!(
116 infer(r#"
117fn test() {
118 let x: &[i32] = &[1];
119}
120"#),
121 @r###"
122 [11; 40) '{ ...[1]; }': ()
123 [21; 22) 'x': &[i32]
124 [33; 37) '&[1]': &[i32;_]
125 [34; 37) '[1]': [i32;_]
126 [35; 36) '1': i32
127 "###);
128}
129
130#[test]
131fn infer_custom_coerce_unsized() {
132 assert_snapshot!(
133 infer(r#"
134struct A<T: ?Sized>(*const T);
135struct B<T: ?Sized>(*const T);
136struct C<T: ?Sized> { inner: *const T }
137
138impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<B<U>> for B<T> {}
139impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<C<U>> for C<T> {}
140
141fn foo1<T>(x: A<[T]>) -> A<[T]> { x }
142fn foo2<T>(x: B<[T]>) -> B<[T]> { x }
143fn foo3<T>(x: C<[T]>) -> C<[T]> { x }
144
145fn test(a: A<[u8; 2]>, b: B<[u8; 2]>, c: C<[u8; 2]>) {
146 let d = foo1(a);
147 let e = foo2(b);
148 let f = foo3(c);
149}
150"#),
151 @r###"
152 [258; 259) 'x': A<[T]>
153 [279; 284) '{ x }': A<[T]>
154 [281; 282) 'x': A<[T]>
155 [296; 297) 'x': B<[T]>
156 [317; 322) '{ x }': B<[T]>
157 [319; 320) 'x': B<[T]>
158 [334; 335) 'x': C<[T]>
159 [355; 360) '{ x }': C<[T]>
160 [357; 358) 'x': C<[T]>
161 [370; 371) 'a': A<[u8;_]>
162 [385; 386) 'b': B<[u8;_]>
163 [400; 401) 'c': C<[u8;_]>
164 [415; 481) '{ ...(c); }': ()
165 [425; 426) 'd': A<[{unknown}]>
166 [429; 433) 'foo1': fn foo1<{unknown}>(A<[T]>) -> A<[T]>
167 [429; 436) 'foo1(a)': A<[{unknown}]>
168 [434; 435) 'a': A<[u8;_]>
169 [446; 447) 'e': B<[u8]>
170 [450; 454) 'foo2': fn foo2<u8>(B<[T]>) -> B<[T]>
171 [450; 457) 'foo2(b)': B<[u8]>
172 [455; 456) 'b': B<[u8;_]>
173 [467; 468) 'f': C<[u8]>
174 [471; 475) 'foo3': fn foo3<u8>(C<[T]>) -> C<[T]>
175 [471; 478) 'foo3(c)': C<[u8]>
176 [476; 477) 'c': C<[u8;_]>
177 "###
178 );
179}
180
181#[test]
182fn infer_if_coerce() {
183 assert_snapshot!(
184 infer(r#"
185fn foo<T>(x: &[T]) -> &[T] { loop {} }
186fn test() {
187 let x = if true {
188 foo(&[1])
189 } else {
190 &[1]
191 };
192}
193"#),
194 @r###"
195 [11; 12) 'x': &[T]
196 [28; 39) '{ loop {} }': &[T]
197 [30; 37) 'loop {}': !
198 [35; 37) '{}': ()
199 [50; 126) '{ ... }; }': ()
200 [60; 61) 'x': &[i32]
201 [64; 123) 'if tru... }': &[i32]
202 [67; 71) 'true': bool
203 [72; 97) '{ ... }': &[i32]
204 [82; 85) 'foo': fn foo<i32>(&[T]) -> &[T]
205 [82; 91) 'foo(&[1])': &[i32]
206 [86; 90) '&[1]': &[i32;_]
207 [87; 90) '[1]': [i32;_]
208 [88; 89) '1': i32
209 [103; 123) '{ ... }': &[i32;_]
210 [113; 117) '&[1]': &[i32;_]
211 [114; 117) '[1]': [i32;_]
212 [115; 116) '1': i32
213 "###
214 );
215}
216
217#[test]
218fn infer_if_else_coerce() {
219 assert_snapshot!(
220 infer(r#"
221fn foo<T>(x: &[T]) -> &[T] { loop {} }
222fn test() {
223 let x = if true {
224 &[1]
225 } else {
226 foo(&[1])
227 };
228}
229"#),
230 @r###"
231 [11; 12) 'x': &[T]
232 [28; 39) '{ loop {} }': &[T]
233 [30; 37) 'loop {}': !
234 [35; 37) '{}': ()
235 [50; 126) '{ ... }; }': ()
236 [60; 61) 'x': &[i32]
237 [64; 123) 'if tru... }': &[i32]
238 [67; 71) 'true': bool
239 [72; 92) '{ ... }': &[i32;_]
240 [82; 86) '&[1]': &[i32;_]
241 [83; 86) '[1]': [i32;_]
242 [84; 85) '1': i32
243 [98; 123) '{ ... }': &[i32]
244 [108; 111) 'foo': fn foo<i32>(&[T]) -> &[T]
245 [108; 117) 'foo(&[1])': &[i32]
246 [112; 116) '&[1]': &[i32;_]
247 [113; 116) '[1]': [i32;_]
248 [114; 115) '1': i32
249 "###
250 );
251}
252
253#[test]
254fn infer_match_first_coerce() {
255 assert_snapshot!(
256 infer(r#"
257fn foo<T>(x: &[T]) -> &[T] { loop {} }
258fn test(i: i32) {
259 let x = match i {
260 2 => foo(&[2]),
261 1 => &[1],
262 _ => &[3],
263 };
264}
265"#),
266 @r###"
267 [11; 12) 'x': &[T]
268 [28; 39) '{ loop {} }': &[T]
269 [30; 37) 'loop {}': !
270 [35; 37) '{}': ()
271 [48; 49) 'i': i32
272 [56; 150) '{ ... }; }': ()
273 [66; 67) 'x': &[i32]
274 [70; 147) 'match ... }': &[i32]
275 [76; 77) 'i': i32
276 [88; 89) '2': i32
277 [93; 96) 'foo': fn foo<i32>(&[T]) -> &[T]
278 [93; 102) 'foo(&[2])': &[i32]
279 [97; 101) '&[2]': &[i32;_]
280 [98; 101) '[2]': [i32;_]
281 [99; 100) '2': i32
282 [112; 113) '1': i32
283 [117; 121) '&[1]': &[i32;_]
284 [118; 121) '[1]': [i32;_]
285 [119; 120) '1': i32
286 [131; 132) '_': i32
287 [136; 140) '&[3]': &[i32;_]
288 [137; 140) '[3]': [i32;_]
289 [138; 139) '3': i32
290 "###
291 );
292}
293
294#[test]
295fn infer_match_second_coerce() {
296 assert_snapshot!(
297 infer(r#"
298fn foo<T>(x: &[T]) -> &[T] { loop {} }
299fn test(i: i32) {
300 let x = match i {
301 1 => &[1],
302 2 => foo(&[2]),
303 _ => &[3],
304 };
305}
306"#),
307 @r###"
308 [11; 12) 'x': &[T]
309 [28; 39) '{ loop {} }': &[T]
310 [30; 37) 'loop {}': !
311 [35; 37) '{}': ()
312 [48; 49) 'i': i32
313 [56; 150) '{ ... }; }': ()
314 [66; 67) 'x': &[i32]
315 [70; 147) 'match ... }': &[i32]
316 [76; 77) 'i': i32
317 [88; 89) '1': i32
318 [93; 97) '&[1]': &[i32;_]
319 [94; 97) '[1]': [i32;_]
320 [95; 96) '1': i32
321 [107; 108) '2': i32
322 [112; 115) 'foo': fn foo<i32>(&[T]) -> &[T]
323 [112; 121) 'foo(&[2])': &[i32]
324 [116; 120) '&[2]': &[i32;_]
325 [117; 120) '[2]': [i32;_]
326 [118; 119) '2': i32
327 [131; 132) '_': i32
328 [136; 140) '&[3]': &[i32;_]
329 [137; 140) '[3]': [i32;_]
330 [138; 139) '3': i32
331 "###
332 );
333}
334
335#[test]
336fn coerce_merge_one_by_one1() {
337 covers!(coerce_merge_fail_fallback);
338
339 assert_snapshot!(
340 infer(r#"
341fn test() {
342 let t = &mut 1;
343 let x = match 1 {
344 1 => t as *mut i32,
345 2 => t as &i32,
346 _ => t as *const i32,
347 };
348}
349"#),
350 @r###"
351 [11; 145) '{ ... }; }': ()
352 [21; 22) 't': &mut i32
353 [25; 31) '&mut 1': &mut i32
354 [30; 31) '1': i32
355 [41; 42) 'x': *const i32
356 [45; 142) 'match ... }': *const i32
357 [51; 52) '1': i32
358 [63; 64) '1': i32
359 [68; 69) 't': &mut i32
360 [68; 81) 't as *mut i32': *mut i32
361 [91; 92) '2': i32
362 [96; 97) 't': &mut i32
363 [96; 105) 't as &i32': &i32
364 [115; 116) '_': i32
365 [120; 121) 't': &mut i32
366 [120; 135) 't as *const i32': *const i32
367 "###
368 );
369}
diff --git a/crates/ra_hir/src/ty/tests/never_type.rs b/crates/ra_hir/src/ty/tests/never_type.rs
deleted file mode 100644
index c202f545a..000000000
--- a/crates/ra_hir/src/ty/tests/never_type.rs
+++ /dev/null
@@ -1,246 +0,0 @@
1use super::type_at;
2
3#[test]
4fn infer_never1() {
5 let t = type_at(
6 r#"
7//- /main.rs
8fn test() {
9 let t = return;
10 t<|>;
11}
12"#,
13 );
14 assert_eq!(t, "!");
15}
16
17#[test]
18fn infer_never2() {
19 let t = type_at(
20 r#"
21//- /main.rs
22fn gen<T>() -> T { loop {} }
23
24fn test() {
25 let a = gen();
26 if false { a } else { loop {} };
27 a<|>;
28}
29"#,
30 );
31 assert_eq!(t, "!");
32}
33
34#[test]
35fn infer_never3() {
36 let t = type_at(
37 r#"
38//- /main.rs
39fn gen<T>() -> T { loop {} }
40
41fn test() {
42 let a = gen();
43 if false { loop {} } else { a };
44 a<|>;
45}
46"#,
47 );
48 assert_eq!(t, "!");
49}
50
51#[test]
52fn never_type_in_generic_args() {
53 let t = type_at(
54 r#"
55//- /main.rs
56enum Option<T> { None, Some(T) }
57
58fn test() {
59 let a = if true { Option::None } else { Option::Some(return) };
60 a<|>;
61}
62"#,
63 );
64 assert_eq!(t, "Option<!>");
65}
66
67#[test]
68fn never_type_can_be_reinferred1() {
69 let t = type_at(
70 r#"
71//- /main.rs
72fn gen<T>() -> T { loop {} }
73
74fn test() {
75 let a = gen();
76 if false { loop {} } else { a };
77 a<|>;
78 if false { a };
79}
80"#,
81 );
82 assert_eq!(t, "()");
83}
84
85#[test]
86fn never_type_can_be_reinferred2() {
87 let t = type_at(
88 r#"
89//- /main.rs
90enum Option<T> { None, Some(T) }
91
92fn test() {
93 let a = if true { Option::None } else { Option::Some(return) };
94 a<|>;
95 match 42 {
96 42 => a,
97 _ => Option::Some(42),
98 };
99}
100"#,
101 );
102 assert_eq!(t, "Option<i32>");
103}
104#[test]
105fn never_type_can_be_reinferred3() {
106 let t = type_at(
107 r#"
108//- /main.rs
109enum Option<T> { None, Some(T) }
110
111fn test() {
112 let a = if true { Option::None } else { Option::Some(return) };
113 a<|>;
114 match 42 {
115 42 => a,
116 _ => Option::Some("str"),
117 };
118}
119"#,
120 );
121 assert_eq!(t, "Option<&str>");
122}
123
124#[test]
125fn match_no_arm() {
126 let t = type_at(
127 r#"
128//- /main.rs
129enum Void {}
130
131fn test(a: Void) {
132 let t = match a {};
133 t<|>;
134}
135"#,
136 );
137 assert_eq!(t, "!");
138}
139
140#[test]
141fn if_never() {
142 let t = type_at(
143 r#"
144//- /main.rs
145fn test() {
146 let i = if true {
147 loop {}
148 } else {
149 3.0
150 };
151 i<|>;
152}
153"#,
154 );
155 assert_eq!(t, "f64");
156}
157
158#[test]
159fn if_else_never() {
160 let t = type_at(
161 r#"
162//- /main.rs
163fn test(input: bool) {
164 let i = if input {
165 2.0
166 } else {
167 return
168 };
169 i<|>;
170}
171"#,
172 );
173 assert_eq!(t, "f64");
174}
175
176#[test]
177fn match_first_arm_never() {
178 let t = type_at(
179 r#"
180//- /main.rs
181fn test(a: i32) {
182 let i = match a {
183 1 => return,
184 2 => 2.0,
185 3 => loop {},
186 _ => 3.0,
187 };
188 i<|>;
189}
190"#,
191 );
192 assert_eq!(t, "f64");
193}
194
195#[test]
196fn match_second_arm_never() {
197 let t = type_at(
198 r#"
199//- /main.rs
200fn test(a: i32) {
201 let i = match a {
202 1 => 3.0,
203 2 => loop {},
204 3 => 3.0,
205 _ => return,
206 };
207 i<|>;
208}
209"#,
210 );
211 assert_eq!(t, "f64");
212}
213
214#[test]
215fn match_all_arms_never() {
216 let t = type_at(
217 r#"
218//- /main.rs
219fn test(a: i32) {
220 let i = match a {
221 2 => return,
222 _ => loop {},
223 };
224 i<|>;
225}
226"#,
227 );
228 assert_eq!(t, "!");
229}
230
231#[test]
232fn match_no_never_arms() {
233 let t = type_at(
234 r#"
235//- /main.rs
236fn test(a: i32) {
237 let i = match a {
238 2 => 2.0,
239 _ => 3.0,
240 };
241 i<|>;
242}
243"#,
244 );
245 assert_eq!(t, "f64");
246}
diff --git a/crates/ra_hir/src/ty/traits.rs b/crates/ra_hir/src/ty/traits.rs
deleted file mode 100644
index 76189a60b..000000000
--- a/crates/ra_hir/src/ty/traits.rs
+++ /dev/null
@@ -1,328 +0,0 @@
1//! Trait solving using Chalk.
2use std::sync::{Arc, Mutex};
3
4use chalk_ir::{cast::Cast, family::ChalkIr};
5use hir_def::{expr::ExprId, DefWithBodyId, ImplId, TraitId, TypeAliasId};
6use log::debug;
7use ra_db::{impl_intern_key, salsa, CrateId};
8use ra_prof::profile;
9use rustc_hash::FxHashSet;
10
11use crate::db::HirDatabase;
12
13use super::{Canonical, GenericPredicate, HirDisplay, ProjectionTy, TraitRef, Ty, TypeWalk};
14
15use self::chalk::{from_chalk, ToChalk};
16
17pub(crate) mod chalk;
18
19#[derive(Debug, Clone)]
20pub struct TraitSolver {
21 krate: CrateId,
22 inner: Arc<Mutex<chalk_solve::Solver<ChalkIr>>>,
23}
24
25/// We need eq for salsa
26impl PartialEq for TraitSolver {
27 fn eq(&self, other: &TraitSolver) -> bool {
28 Arc::ptr_eq(&self.inner, &other.inner)
29 }
30}
31
32impl Eq for TraitSolver {}
33
34impl TraitSolver {
35 fn solve(
36 &self,
37 db: &impl HirDatabase,
38 goal: &chalk_ir::UCanonical<chalk_ir::InEnvironment<chalk_ir::Goal<ChalkIr>>>,
39 ) -> Option<chalk_solve::Solution<ChalkIr>> {
40 let context = ChalkContext { db, krate: self.krate };
41 debug!("solve goal: {:?}", goal);
42 let mut solver = match self.inner.lock() {
43 Ok(it) => it,
44 // Our cancellation works via unwinding, but, as chalk is not
45 // panic-safe, we need to make sure to propagate the cancellation.
46 // Ideally, we should also make chalk panic-safe.
47 Err(_) => ra_db::Canceled::throw(),
48 };
49 let solution = solver.solve(&context, goal);
50 debug!("solve({:?}) => {:?}", goal, solution);
51 solution
52 }
53}
54
55/// This controls the maximum size of types Chalk considers. If we set this too
56/// high, we can run into slow edge cases; if we set it too low, Chalk won't
57/// find some solutions.
58const CHALK_SOLVER_MAX_SIZE: usize = 4;
59
60#[derive(Debug, Copy, Clone)]
61struct ChalkContext<'a, DB> {
62 db: &'a DB,
63 krate: CrateId,
64}
65
66pub(crate) fn trait_solver_query(
67 db: &(impl HirDatabase + salsa::Database),
68 krate: CrateId,
69) -> TraitSolver {
70 db.salsa_runtime().report_untracked_read();
71 // krate parameter is just so we cache a unique solver per crate
72 let solver_choice = chalk_solve::SolverChoice::SLG { max_size: CHALK_SOLVER_MAX_SIZE };
73 debug!("Creating new solver for crate {:?}", krate);
74 TraitSolver { krate, inner: Arc::new(Mutex::new(solver_choice.into_solver())) }
75}
76
77/// Collects impls for the given trait in the whole dependency tree of `krate`.
78pub(crate) fn impls_for_trait_query(
79 db: &impl HirDatabase,
80 krate: CrateId,
81 trait_: TraitId,
82) -> Arc<[ImplId]> {
83 let mut impls = FxHashSet::default();
84 // We call the query recursively here. On the one hand, this means we can
85 // reuse results from queries for different crates; on the other hand, this
86 // will only ever get called for a few crates near the root of the tree (the
87 // ones the user is editing), so this may actually be a waste of memory. I'm
88 // doing it like this mainly for simplicity for now.
89 for dep in db.crate_graph().dependencies(krate) {
90 impls.extend(db.impls_for_trait(dep.crate_id, trait_).iter());
91 }
92 let crate_impl_blocks = db.impls_in_crate(krate);
93 impls.extend(crate_impl_blocks.lookup_impl_blocks_for_trait(trait_));
94 impls.into_iter().collect()
95}
96
97/// A set of clauses that we assume to be true. E.g. if we are inside this function:
98/// ```rust
99/// fn foo<T: Default>(t: T) {}
100/// ```
101/// we assume that `T: Default`.
102#[derive(Clone, Debug, PartialEq, Eq, Hash)]
103pub struct TraitEnvironment {
104 pub predicates: Vec<GenericPredicate>,
105}
106
107impl TraitEnvironment {
108 /// Returns trait refs with the given self type which are supposed to hold
109 /// in this trait env. E.g. if we are in `foo<T: SomeTrait>()`, this will
110 /// find that `T: SomeTrait` if we call it for `T`.
111 pub(crate) fn trait_predicates_for_self_ty<'a>(
112 &'a self,
113 ty: &'a Ty,
114 ) -> impl Iterator<Item = &'a TraitRef> + 'a {
115 self.predicates.iter().filter_map(move |pred| match pred {
116 GenericPredicate::Implemented(tr) if tr.self_ty() == ty => Some(tr),
117 _ => None,
118 })
119 }
120}
121
122/// Something (usually a goal), along with an environment.
123#[derive(Clone, Debug, PartialEq, Eq, Hash)]
124pub struct InEnvironment<T> {
125 pub environment: Arc<TraitEnvironment>,
126 pub value: T,
127}
128
129impl<T> InEnvironment<T> {
130 pub fn new(environment: Arc<TraitEnvironment>, value: T) -> InEnvironment<T> {
131 InEnvironment { environment, value }
132 }
133}
134
135/// Something that needs to be proven (by Chalk) during type checking, e.g. that
136/// a certain type implements a certain trait. Proving the Obligation might
137/// result in additional information about inference variables.
138#[derive(Clone, Debug, PartialEq, Eq, Hash)]
139pub enum Obligation {
140 /// Prove that a certain type implements a trait (the type is the `Self` type
141 /// parameter to the `TraitRef`).
142 Trait(TraitRef),
143 Projection(ProjectionPredicate),
144}
145
146impl Obligation {
147 pub fn from_predicate(predicate: GenericPredicate) -> Option<Obligation> {
148 match predicate {
149 GenericPredicate::Implemented(trait_ref) => Some(Obligation::Trait(trait_ref)),
150 GenericPredicate::Projection(projection_pred) => {
151 Some(Obligation::Projection(projection_pred))
152 }
153 GenericPredicate::Error => None,
154 }
155 }
156}
157
158#[derive(Clone, Debug, PartialEq, Eq, Hash)]
159pub struct ProjectionPredicate {
160 pub projection_ty: ProjectionTy,
161 pub ty: Ty,
162}
163
164impl TypeWalk for ProjectionPredicate {
165 fn walk(&self, f: &mut impl FnMut(&Ty)) {
166 self.projection_ty.walk(f);
167 self.ty.walk(f);
168 }
169
170 fn walk_mut_binders(&mut self, f: &mut impl FnMut(&mut Ty, usize), binders: usize) {
171 self.projection_ty.walk_mut_binders(f, binders);
172 self.ty.walk_mut_binders(f, binders);
173 }
174}
175
176/// Solve a trait goal using Chalk.
177pub(crate) fn trait_solve_query(
178 db: &impl HirDatabase,
179 krate: CrateId,
180 goal: Canonical<InEnvironment<Obligation>>,
181) -> Option<Solution> {
182 let _p = profile("trait_solve_query");
183 debug!("trait_solve_query({})", goal.value.value.display(db));
184
185 if let Obligation::Projection(pred) = &goal.value.value {
186 if let Ty::Bound(_) = &pred.projection_ty.parameters[0] {
187 // Hack: don't ask Chalk to normalize with an unknown self type, it'll say that's impossible
188 return Some(Solution::Ambig(Guidance::Unknown));
189 }
190 }
191
192 let canonical = goal.to_chalk(db).cast();
193
194 // We currently don't deal with universes (I think / hope they're not yet
195 // relevant for our use cases?)
196 let u_canonical = chalk_ir::UCanonical { canonical, universes: 1 };
197 let solution = db.trait_solver(krate).solve(db, &u_canonical);
198 solution.map(|solution| solution_from_chalk(db, solution))
199}
200
201fn solution_from_chalk(
202 db: &impl HirDatabase,
203 solution: chalk_solve::Solution<ChalkIr>,
204) -> Solution {
205 let convert_subst = |subst: chalk_ir::Canonical<chalk_ir::Substitution<ChalkIr>>| {
206 let value = subst
207 .value
208 .parameters
209 .into_iter()
210 .map(|p| {
211 let ty = match p {
212 chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty),
213 chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(),
214 };
215 ty
216 })
217 .collect();
218 let result = Canonical { value, num_vars: subst.binders.len() };
219 SolutionVariables(result)
220 };
221 match solution {
222 chalk_solve::Solution::Unique(constr_subst) => {
223 let subst = chalk_ir::Canonical {
224 value: constr_subst.value.subst,
225 binders: constr_subst.binders,
226 };
227 Solution::Unique(convert_subst(subst))
228 }
229 chalk_solve::Solution::Ambig(chalk_solve::Guidance::Definite(subst)) => {
230 Solution::Ambig(Guidance::Definite(convert_subst(subst)))
231 }
232 chalk_solve::Solution::Ambig(chalk_solve::Guidance::Suggested(subst)) => {
233 Solution::Ambig(Guidance::Suggested(convert_subst(subst)))
234 }
235 chalk_solve::Solution::Ambig(chalk_solve::Guidance::Unknown) => {
236 Solution::Ambig(Guidance::Unknown)
237 }
238 }
239}
240
241#[derive(Clone, Debug, PartialEq, Eq)]
242pub struct SolutionVariables(pub Canonical<Vec<Ty>>);
243
244#[derive(Clone, Debug, PartialEq, Eq)]
245/// A (possible) solution for a proposed goal.
246pub enum Solution {
247 /// The goal indeed holds, and there is a unique value for all existential
248 /// variables.
249 Unique(SolutionVariables),
250
251 /// The goal may be provable in multiple ways, but regardless we may have some guidance
252 /// for type inference. In this case, we don't return any lifetime
253 /// constraints, since we have not "committed" to any particular solution
254 /// yet.
255 Ambig(Guidance),
256}
257
258#[derive(Clone, Debug, PartialEq, Eq)]
259/// When a goal holds ambiguously (e.g., because there are multiple possible
260/// solutions), we issue a set of *guidance* back to type inference.
261pub enum Guidance {
262 /// The existential variables *must* have the given values if the goal is
263 /// ever to hold, but that alone isn't enough to guarantee the goal will
264 /// actually hold.
265 Definite(SolutionVariables),
266
267 /// There are multiple plausible values for the existentials, but the ones
268 /// here are suggested as the preferred choice heuristically. These should
269 /// be used for inference fallback only.
270 Suggested(SolutionVariables),
271
272 /// There's no useful information to feed back to type inference
273 Unknown,
274}
275
276#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
277pub enum FnTrait {
278 FnOnce,
279 FnMut,
280 Fn,
281}
282
283impl FnTrait {
284 fn lang_item_name(self) -> &'static str {
285 match self {
286 FnTrait::FnOnce => "fn_once",
287 FnTrait::FnMut => "fn_mut",
288 FnTrait::Fn => "fn",
289 }
290 }
291}
292
293#[derive(Debug, Clone, PartialEq, Eq, Hash)]
294pub struct ClosureFnTraitImplData {
295 def: DefWithBodyId,
296 expr: ExprId,
297 fn_trait: FnTrait,
298}
299
300/// An impl. Usually this comes from an impl block, but some built-in types get
301/// synthetic impls.
302#[derive(Debug, Clone, PartialEq, Eq, Hash)]
303pub enum Impl {
304 /// A normal impl from an impl block.
305 ImplBlock(ImplId),
306 /// Closure types implement the Fn traits synthetically.
307 ClosureFnTraitImpl(ClosureFnTraitImplData),
308}
309/// This exists just for Chalk, because our ImplIds are only unique per module.
310#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
311pub struct GlobalImplId(salsa::InternId);
312impl_intern_key!(GlobalImplId);
313
314/// An associated type value. Usually this comes from a `type` declaration
315/// inside an impl block, but for built-in impls we have to synthesize it.
316/// (We only need this because Chalk wants a unique ID for each of these.)
317#[derive(Debug, Clone, PartialEq, Eq, Hash)]
318pub enum AssocTyValue {
319 /// A normal assoc type value from an impl block.
320 TypeAlias(TypeAliasId),
321 /// The output type of the Fn trait implementation.
322 ClosureFnTraitImplOutput(ClosureFnTraitImplData),
323}
324/// This exists just for Chalk, because it needs a unique ID for each associated
325/// type value in an impl (even synthetic ones).
326#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
327pub struct AssocTyValueId(salsa::InternId);
328impl_intern_key!(AssocTyValueId);
diff --git a/crates/ra_hir/src/ty/traits/chalk.rs b/crates/ra_hir/src/ty/traits/chalk.rs
deleted file mode 100644
index 67ac5422c..000000000
--- a/crates/ra_hir/src/ty/traits/chalk.rs
+++ /dev/null
@@ -1,906 +0,0 @@
1//! Conversion code from/to Chalk.
2use std::sync::Arc;
3
4use log::debug;
5
6use chalk_ir::{
7 cast::Cast, family::ChalkIr, Identifier, Parameter, PlaceholderIndex, TypeId, TypeKindId,
8 TypeName, UniverseIndex,
9};
10use chalk_rust_ir::{AssociatedTyDatum, AssociatedTyValue, ImplDatum, StructDatum, TraitDatum};
11use ra_db::CrateId;
12
13use hir_def::{
14 lang_item::LangItemTarget, resolver::HasResolver, AssocItemId, AstItemDef, ContainerId,
15 GenericDefId, ImplId, Lookup, TraitId, TypeAliasId,
16};
17use hir_expand::name;
18
19use ra_db::salsa::{InternId, InternKey};
20
21use super::{AssocTyValue, Canonical, ChalkContext, Impl, Obligation};
22use crate::{
23 db::HirDatabase,
24 ty::display::HirDisplay,
25 ty::{ApplicationTy, GenericPredicate, ProjectionTy, Substs, TraitRef, Ty, TypeCtor, TypeWalk},
26};
27
28/// This represents a trait whose name we could not resolve.
29const UNKNOWN_TRAIT: chalk_ir::TraitId =
30 chalk_ir::TraitId(chalk_ir::RawId { index: u32::max_value() });
31
32pub(super) trait ToChalk {
33 type Chalk;
34 fn to_chalk(self, db: &impl HirDatabase) -> Self::Chalk;
35 fn from_chalk(db: &impl HirDatabase, chalk: Self::Chalk) -> Self;
36}
37
38pub(super) fn from_chalk<T, ChalkT>(db: &impl HirDatabase, chalk: ChalkT) -> T
39where
40 T: ToChalk<Chalk = ChalkT>,
41{
42 T::from_chalk(db, chalk)
43}
44
45impl ToChalk for Ty {
46 type Chalk = chalk_ir::Ty<ChalkIr>;
47 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Ty<ChalkIr> {
48 match self {
49 Ty::Apply(apply_ty) => {
50 let name = match apply_ty.ctor {
51 TypeCtor::AssociatedType(type_alias) => {
52 let type_id = type_alias.to_chalk(db);
53 TypeName::AssociatedType(type_id)
54 }
55 _ => {
56 // other TypeCtors get interned and turned into a chalk StructId
57 let struct_id = apply_ty.ctor.to_chalk(db);
58 TypeName::TypeKindId(struct_id.into())
59 }
60 };
61 let parameters = apply_ty.parameters.to_chalk(db);
62 chalk_ir::ApplicationTy { name, parameters }.cast().intern()
63 }
64 Ty::Projection(proj_ty) => {
65 let associated_ty_id = proj_ty.associated_ty.to_chalk(db);
66 let parameters = proj_ty.parameters.to_chalk(db);
67 chalk_ir::ProjectionTy { associated_ty_id, parameters }.cast().intern()
68 }
69 Ty::Param { idx, .. } => {
70 PlaceholderIndex { ui: UniverseIndex::ROOT, idx: idx as usize }.to_ty::<ChalkIr>()
71 }
72 Ty::Bound(idx) => chalk_ir::TyData::BoundVar(idx as usize).intern(),
73 Ty::Infer(_infer_ty) => panic!("uncanonicalized infer ty"),
74 Ty::Dyn(predicates) => {
75 let where_clauses = predicates.iter().cloned().map(|p| p.to_chalk(db)).collect();
76 chalk_ir::TyData::Dyn(make_binders(where_clauses, 1)).intern()
77 }
78 Ty::Opaque(predicates) => {
79 let where_clauses = predicates.iter().cloned().map(|p| p.to_chalk(db)).collect();
80 chalk_ir::TyData::Opaque(make_binders(where_clauses, 1)).intern()
81 }
82 Ty::Unknown => {
83 let parameters = Vec::new();
84 let name = TypeName::Error;
85 chalk_ir::ApplicationTy { name, parameters }.cast().intern()
86 }
87 }
88 }
89 fn from_chalk(db: &impl HirDatabase, chalk: chalk_ir::Ty<ChalkIr>) -> Self {
90 match chalk.data().clone() {
91 chalk_ir::TyData::Apply(apply_ty) => {
92 // FIXME this is kind of hacky due to the fact that
93 // TypeName::Placeholder is a Ty::Param on our side
94 match apply_ty.name {
95 TypeName::TypeKindId(TypeKindId::StructId(struct_id)) => {
96 let ctor = from_chalk(db, struct_id);
97 let parameters = from_chalk(db, apply_ty.parameters);
98 Ty::Apply(ApplicationTy { ctor, parameters })
99 }
100 TypeName::AssociatedType(type_id) => {
101 let ctor = TypeCtor::AssociatedType(from_chalk(db, type_id));
102 let parameters = from_chalk(db, apply_ty.parameters);
103 Ty::Apply(ApplicationTy { ctor, parameters })
104 }
105 TypeName::Error => Ty::Unknown,
106 // FIXME handle TypeKindId::Trait/Type here
107 TypeName::TypeKindId(_) => unimplemented!(),
108 TypeName::Placeholder(idx) => {
109 assert_eq!(idx.ui, UniverseIndex::ROOT);
110 Ty::Param { idx: idx.idx as u32, name: crate::Name::missing() }
111 }
112 }
113 }
114 chalk_ir::TyData::Projection(proj) => {
115 let associated_ty = from_chalk(db, proj.associated_ty_id);
116 let parameters = from_chalk(db, proj.parameters);
117 Ty::Projection(ProjectionTy { associated_ty, parameters })
118 }
119 chalk_ir::TyData::ForAll(_) => unimplemented!(),
120 chalk_ir::TyData::BoundVar(idx) => Ty::Bound(idx as u32),
121 chalk_ir::TyData::InferenceVar(_iv) => Ty::Unknown,
122 chalk_ir::TyData::Dyn(where_clauses) => {
123 assert_eq!(where_clauses.binders.len(), 1);
124 let predicates =
125 where_clauses.value.into_iter().map(|c| from_chalk(db, c)).collect();
126 Ty::Dyn(predicates)
127 }
128 chalk_ir::TyData::Opaque(where_clauses) => {
129 assert_eq!(where_clauses.binders.len(), 1);
130 let predicates =
131 where_clauses.value.into_iter().map(|c| from_chalk(db, c)).collect();
132 Ty::Opaque(predicates)
133 }
134 }
135 }
136}
137
138impl ToChalk for Substs {
139 type Chalk = Vec<chalk_ir::Parameter<ChalkIr>>;
140
141 fn to_chalk(self, db: &impl HirDatabase) -> Vec<Parameter<ChalkIr>> {
142 self.iter().map(|ty| ty.clone().to_chalk(db).cast()).collect()
143 }
144
145 fn from_chalk(db: &impl HirDatabase, parameters: Vec<chalk_ir::Parameter<ChalkIr>>) -> Substs {
146 let tys = parameters
147 .into_iter()
148 .map(|p| match p {
149 chalk_ir::Parameter(chalk_ir::ParameterKind::Ty(ty)) => from_chalk(db, ty),
150 chalk_ir::Parameter(chalk_ir::ParameterKind::Lifetime(_)) => unimplemented!(),
151 })
152 .collect();
153 Substs(tys)
154 }
155}
156
157impl ToChalk for TraitRef {
158 type Chalk = chalk_ir::TraitRef<ChalkIr>;
159
160 fn to_chalk(self: TraitRef, db: &impl HirDatabase) -> chalk_ir::TraitRef<ChalkIr> {
161 let trait_id = self.trait_.to_chalk(db);
162 let parameters = self.substs.to_chalk(db);
163 chalk_ir::TraitRef { trait_id, parameters }
164 }
165
166 fn from_chalk(db: &impl HirDatabase, trait_ref: chalk_ir::TraitRef<ChalkIr>) -> Self {
167 let trait_ = from_chalk(db, trait_ref.trait_id);
168 let substs = from_chalk(db, trait_ref.parameters);
169 TraitRef { trait_, substs }
170 }
171}
172
173impl ToChalk for TraitId {
174 type Chalk = chalk_ir::TraitId;
175
176 fn to_chalk(self, _db: &impl HirDatabase) -> chalk_ir::TraitId {
177 chalk_ir::TraitId(id_to_chalk(self))
178 }
179
180 fn from_chalk(_db: &impl HirDatabase, trait_id: chalk_ir::TraitId) -> TraitId {
181 id_from_chalk(trait_id.0)
182 }
183}
184
185impl ToChalk for TypeCtor {
186 type Chalk = chalk_ir::StructId;
187
188 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::StructId {
189 db.intern_type_ctor(self).into()
190 }
191
192 fn from_chalk(db: &impl HirDatabase, struct_id: chalk_ir::StructId) -> TypeCtor {
193 db.lookup_intern_type_ctor(struct_id.into())
194 }
195}
196
197impl ToChalk for Impl {
198 type Chalk = chalk_ir::ImplId;
199
200 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::ImplId {
201 db.intern_chalk_impl(self).into()
202 }
203
204 fn from_chalk(db: &impl HirDatabase, impl_id: chalk_ir::ImplId) -> Impl {
205 db.lookup_intern_chalk_impl(impl_id.into())
206 }
207}
208
209impl ToChalk for TypeAliasId {
210 type Chalk = chalk_ir::TypeId;
211
212 fn to_chalk(self, _db: &impl HirDatabase) -> chalk_ir::TypeId {
213 chalk_ir::TypeId(id_to_chalk(self))
214 }
215
216 fn from_chalk(_db: &impl HirDatabase, type_alias_id: chalk_ir::TypeId) -> TypeAliasId {
217 id_from_chalk(type_alias_id.0)
218 }
219}
220
221impl ToChalk for AssocTyValue {
222 type Chalk = chalk_rust_ir::AssociatedTyValueId;
223
224 fn to_chalk(self, db: &impl HirDatabase) -> chalk_rust_ir::AssociatedTyValueId {
225 db.intern_assoc_ty_value(self).into()
226 }
227
228 fn from_chalk(
229 db: &impl HirDatabase,
230 assoc_ty_value_id: chalk_rust_ir::AssociatedTyValueId,
231 ) -> AssocTyValue {
232 db.lookup_intern_assoc_ty_value(assoc_ty_value_id.into())
233 }
234}
235
236impl ToChalk for GenericPredicate {
237 type Chalk = chalk_ir::QuantifiedWhereClause<ChalkIr>;
238
239 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::QuantifiedWhereClause<ChalkIr> {
240 match self {
241 GenericPredicate::Implemented(trait_ref) => {
242 make_binders(chalk_ir::WhereClause::Implemented(trait_ref.to_chalk(db)), 0)
243 }
244 GenericPredicate::Projection(projection_pred) => make_binders(
245 chalk_ir::WhereClause::ProjectionEq(chalk_ir::ProjectionEq {
246 projection: projection_pred.projection_ty.to_chalk(db),
247 ty: projection_pred.ty.to_chalk(db),
248 }),
249 0,
250 ),
251 GenericPredicate::Error => {
252 let impossible_trait_ref = chalk_ir::TraitRef {
253 trait_id: UNKNOWN_TRAIT,
254 parameters: vec![Ty::Unknown.to_chalk(db).cast()],
255 };
256 make_binders(chalk_ir::WhereClause::Implemented(impossible_trait_ref), 0)
257 }
258 }
259 }
260
261 fn from_chalk(
262 db: &impl HirDatabase,
263 where_clause: chalk_ir::QuantifiedWhereClause<ChalkIr>,
264 ) -> GenericPredicate {
265 match where_clause.value {
266 chalk_ir::WhereClause::Implemented(tr) => {
267 if tr.trait_id == UNKNOWN_TRAIT {
268 // FIXME we need an Error enum on the Chalk side to avoid this
269 return GenericPredicate::Error;
270 }
271 GenericPredicate::Implemented(from_chalk(db, tr))
272 }
273 chalk_ir::WhereClause::ProjectionEq(projection_eq) => {
274 let projection_ty = from_chalk(db, projection_eq.projection);
275 let ty = from_chalk(db, projection_eq.ty);
276 GenericPredicate::Projection(super::ProjectionPredicate { projection_ty, ty })
277 }
278 }
279 }
280}
281
282impl ToChalk for ProjectionTy {
283 type Chalk = chalk_ir::ProjectionTy<ChalkIr>;
284
285 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::ProjectionTy<ChalkIr> {
286 chalk_ir::ProjectionTy {
287 associated_ty_id: self.associated_ty.to_chalk(db),
288 parameters: self.parameters.to_chalk(db),
289 }
290 }
291
292 fn from_chalk(
293 db: &impl HirDatabase,
294 projection_ty: chalk_ir::ProjectionTy<ChalkIr>,
295 ) -> ProjectionTy {
296 ProjectionTy {
297 associated_ty: from_chalk(db, projection_ty.associated_ty_id),
298 parameters: from_chalk(db, projection_ty.parameters),
299 }
300 }
301}
302
303impl ToChalk for super::ProjectionPredicate {
304 type Chalk = chalk_ir::Normalize<ChalkIr>;
305
306 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Normalize<ChalkIr> {
307 chalk_ir::Normalize {
308 projection: self.projection_ty.to_chalk(db),
309 ty: self.ty.to_chalk(db),
310 }
311 }
312
313 fn from_chalk(_db: &impl HirDatabase, _normalize: chalk_ir::Normalize<ChalkIr>) -> Self {
314 unimplemented!()
315 }
316}
317
318impl ToChalk for Obligation {
319 type Chalk = chalk_ir::DomainGoal<ChalkIr>;
320
321 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::DomainGoal<ChalkIr> {
322 match self {
323 Obligation::Trait(tr) => tr.to_chalk(db).cast(),
324 Obligation::Projection(pr) => pr.to_chalk(db).cast(),
325 }
326 }
327
328 fn from_chalk(_db: &impl HirDatabase, _goal: chalk_ir::DomainGoal<ChalkIr>) -> Self {
329 unimplemented!()
330 }
331}
332
333impl<T> ToChalk for Canonical<T>
334where
335 T: ToChalk,
336{
337 type Chalk = chalk_ir::Canonical<T::Chalk>;
338
339 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Canonical<T::Chalk> {
340 let parameter = chalk_ir::ParameterKind::Ty(chalk_ir::UniverseIndex::ROOT);
341 let value = self.value.to_chalk(db);
342 let canonical = chalk_ir::Canonical { value, binders: vec![parameter; self.num_vars] };
343 canonical
344 }
345
346 fn from_chalk(db: &impl HirDatabase, canonical: chalk_ir::Canonical<T::Chalk>) -> Canonical<T> {
347 Canonical { num_vars: canonical.binders.len(), value: from_chalk(db, canonical.value) }
348 }
349}
350
351impl ToChalk for Arc<super::TraitEnvironment> {
352 type Chalk = chalk_ir::Environment<ChalkIr>;
353
354 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::Environment<ChalkIr> {
355 let mut clauses = Vec::new();
356 for pred in &self.predicates {
357 if pred.is_error() {
358 // for env, we just ignore errors
359 continue;
360 }
361 let program_clause: chalk_ir::ProgramClause<ChalkIr> = pred.clone().to_chalk(db).cast();
362 clauses.push(program_clause.into_from_env_clause());
363 }
364 chalk_ir::Environment::new().add_clauses(clauses)
365 }
366
367 fn from_chalk(
368 _db: &impl HirDatabase,
369 _env: chalk_ir::Environment<ChalkIr>,
370 ) -> Arc<super::TraitEnvironment> {
371 unimplemented!()
372 }
373}
374
375impl<T: ToChalk> ToChalk for super::InEnvironment<T>
376where
377 T::Chalk: chalk_ir::family::HasTypeFamily<TypeFamily = ChalkIr>,
378{
379 type Chalk = chalk_ir::InEnvironment<T::Chalk>;
380
381 fn to_chalk(self, db: &impl HirDatabase) -> chalk_ir::InEnvironment<T::Chalk> {
382 chalk_ir::InEnvironment {
383 environment: self.environment.to_chalk(db),
384 goal: self.value.to_chalk(db),
385 }
386 }
387
388 fn from_chalk(
389 db: &impl HirDatabase,
390 in_env: chalk_ir::InEnvironment<T::Chalk>,
391 ) -> super::InEnvironment<T> {
392 super::InEnvironment {
393 environment: from_chalk(db, in_env.environment),
394 value: from_chalk(db, in_env.goal),
395 }
396 }
397}
398
399fn make_binders<T>(value: T, num_vars: usize) -> chalk_ir::Binders<T> {
400 chalk_ir::Binders {
401 value,
402 binders: std::iter::repeat(chalk_ir::ParameterKind::Ty(())).take(num_vars).collect(),
403 }
404}
405
406fn convert_where_clauses(
407 db: &impl HirDatabase,
408 def: GenericDefId,
409 substs: &Substs,
410) -> Vec<chalk_ir::QuantifiedWhereClause<ChalkIr>> {
411 let generic_predicates = db.generic_predicates(def);
412 let mut result = Vec::with_capacity(generic_predicates.len());
413 for pred in generic_predicates.iter() {
414 if pred.is_error() {
415 // HACK: Return just the single predicate (which is always false
416 // anyway), otherwise Chalk can easily get into slow situations
417 return vec![pred.clone().subst(substs).to_chalk(db)];
418 }
419 result.push(pred.clone().subst(substs).to_chalk(db));
420 }
421 result
422}
423
424impl<'a, DB> chalk_solve::RustIrDatabase<ChalkIr> for ChalkContext<'a, DB>
425where
426 DB: HirDatabase,
427{
428 fn associated_ty_data(&self, id: TypeId) -> Arc<AssociatedTyDatum<ChalkIr>> {
429 self.db.associated_ty_data(id)
430 }
431 fn trait_datum(&self, trait_id: chalk_ir::TraitId) -> Arc<TraitDatum<ChalkIr>> {
432 self.db.trait_datum(self.krate, trait_id)
433 }
434 fn struct_datum(&self, struct_id: chalk_ir::StructId) -> Arc<StructDatum<ChalkIr>> {
435 self.db.struct_datum(self.krate, struct_id)
436 }
437 fn impl_datum(&self, impl_id: chalk_ir::ImplId) -> Arc<ImplDatum<ChalkIr>> {
438 self.db.impl_datum(self.krate, impl_id)
439 }
440 fn impls_for_trait(
441 &self,
442 trait_id: chalk_ir::TraitId,
443 parameters: &[Parameter<ChalkIr>],
444 ) -> Vec<chalk_ir::ImplId> {
445 debug!("impls_for_trait {:?}", trait_id);
446 if trait_id == UNKNOWN_TRAIT {
447 return Vec::new();
448 }
449 let trait_: TraitId = from_chalk(self.db, trait_id);
450 let mut result: Vec<_> = self
451 .db
452 .impls_for_trait(self.krate, trait_.into())
453 .iter()
454 .copied()
455 .map(|it| Impl::ImplBlock(it.into()))
456 .map(|impl_| impl_.to_chalk(self.db))
457 .collect();
458
459 let ty: Ty = from_chalk(self.db, parameters[0].assert_ty_ref().clone());
460 if let Ty::Apply(ApplicationTy { ctor: TypeCtor::Closure { def, expr }, .. }) = ty {
461 for &fn_trait in
462 [super::FnTrait::FnOnce, super::FnTrait::FnMut, super::FnTrait::Fn].iter()
463 {
464 if let Some(actual_trait) = get_fn_trait(self.db, self.krate, fn_trait) {
465 if trait_ == actual_trait {
466 let impl_ = super::ClosureFnTraitImplData { def, expr, fn_trait };
467 result.push(Impl::ClosureFnTraitImpl(impl_).to_chalk(self.db));
468 }
469 }
470 }
471 }
472
473 debug!("impls_for_trait returned {} impls", result.len());
474 result
475 }
476 fn impl_provided_for(
477 &self,
478 auto_trait_id: chalk_ir::TraitId,
479 struct_id: chalk_ir::StructId,
480 ) -> bool {
481 debug!("impl_provided_for {:?}, {:?}", auto_trait_id, struct_id);
482 false // FIXME
483 }
484 fn type_name(&self, _id: TypeKindId) -> Identifier {
485 unimplemented!()
486 }
487 fn associated_ty_value(
488 &self,
489 id: chalk_rust_ir::AssociatedTyValueId,
490 ) -> Arc<AssociatedTyValue<ChalkIr>> {
491 self.db.associated_ty_value(self.krate.into(), id)
492 }
493 fn custom_clauses(&self) -> Vec<chalk_ir::ProgramClause<ChalkIr>> {
494 vec![]
495 }
496 fn local_impls_to_coherence_check(
497 &self,
498 _trait_id: chalk_ir::TraitId,
499 ) -> Vec<chalk_ir::ImplId> {
500 // We don't do coherence checking (yet)
501 unimplemented!()
502 }
503}
504
505pub(crate) fn associated_ty_data_query(
506 db: &impl HirDatabase,
507 id: TypeId,
508) -> Arc<AssociatedTyDatum<ChalkIr>> {
509 debug!("associated_ty_data {:?}", id);
510 let type_alias: TypeAliasId = from_chalk(db, id);
511 let trait_ = match type_alias.lookup(db).container {
512 ContainerId::TraitId(t) => t,
513 _ => panic!("associated type not in trait"),
514 };
515 let generic_params = db.generic_params(type_alias.into());
516 let bound_data = chalk_rust_ir::AssociatedTyDatumBound {
517 // FIXME add bounds and where clauses
518 bounds: vec![],
519 where_clauses: vec![],
520 };
521 let datum = AssociatedTyDatum {
522 trait_id: trait_.to_chalk(db),
523 id,
524 name: lalrpop_intern::intern(&db.type_alias_data(type_alias).name.to_string()),
525 binders: make_binders(bound_data, generic_params.count_params_including_parent()),
526 };
527 Arc::new(datum)
528}
529
530pub(crate) fn trait_datum_query(
531 db: &impl HirDatabase,
532 krate: CrateId,
533 trait_id: chalk_ir::TraitId,
534) -> Arc<TraitDatum<ChalkIr>> {
535 debug!("trait_datum {:?}", trait_id);
536 if trait_id == UNKNOWN_TRAIT {
537 let trait_datum_bound = chalk_rust_ir::TraitDatumBound { where_clauses: Vec::new() };
538
539 let flags = chalk_rust_ir::TraitFlags {
540 auto: false,
541 marker: false,
542 upstream: true,
543 fundamental: false,
544 non_enumerable: true,
545 coinductive: false,
546 };
547 return Arc::new(TraitDatum {
548 id: trait_id,
549 binders: make_binders(trait_datum_bound, 1),
550 flags,
551 associated_ty_ids: vec![],
552 });
553 }
554 let trait_: TraitId = from_chalk(db, trait_id);
555 let trait_data = db.trait_data(trait_);
556 debug!("trait {:?} = {:?}", trait_id, trait_data.name);
557 let generic_params = db.generic_params(trait_.into());
558 let bound_vars = Substs::bound_vars(&generic_params);
559 let flags = chalk_rust_ir::TraitFlags {
560 auto: trait_data.auto,
561 upstream: trait_.module(db).krate != krate,
562 non_enumerable: true,
563 coinductive: false, // only relevant for Chalk testing
564 // FIXME set these flags correctly
565 marker: false,
566 fundamental: false,
567 };
568 let where_clauses = convert_where_clauses(db, trait_.into(), &bound_vars);
569 let associated_ty_ids =
570 trait_data.associated_types().map(|type_alias| type_alias.to_chalk(db)).collect();
571 let trait_datum_bound = chalk_rust_ir::TraitDatumBound { where_clauses };
572 let trait_datum = TraitDatum {
573 id: trait_id,
574 binders: make_binders(trait_datum_bound, bound_vars.len()),
575 flags,
576 associated_ty_ids,
577 };
578 Arc::new(trait_datum)
579}
580
581pub(crate) fn struct_datum_query(
582 db: &impl HirDatabase,
583 krate: CrateId,
584 struct_id: chalk_ir::StructId,
585) -> Arc<StructDatum<ChalkIr>> {
586 debug!("struct_datum {:?}", struct_id);
587 let type_ctor: TypeCtor = from_chalk(db, struct_id);
588 debug!("struct {:?} = {:?}", struct_id, type_ctor);
589 let num_params = type_ctor.num_ty_params(db);
590 let upstream = type_ctor.krate(db) != Some(krate);
591 let where_clauses = type_ctor
592 .as_generic_def()
593 .map(|generic_def| {
594 let generic_params = db.generic_params(generic_def.into());
595 let bound_vars = Substs::bound_vars(&generic_params);
596 convert_where_clauses(db, generic_def, &bound_vars)
597 })
598 .unwrap_or_else(Vec::new);
599 let flags = chalk_rust_ir::StructFlags {
600 upstream,
601 // FIXME set fundamental flag correctly
602 fundamental: false,
603 };
604 let struct_datum_bound = chalk_rust_ir::StructDatumBound {
605 fields: Vec::new(), // FIXME add fields (only relevant for auto traits)
606 where_clauses,
607 };
608 let struct_datum =
609 StructDatum { id: struct_id, binders: make_binders(struct_datum_bound, num_params), flags };
610 Arc::new(struct_datum)
611}
612
613pub(crate) fn impl_datum_query(
614 db: &impl HirDatabase,
615 krate: CrateId,
616 impl_id: chalk_ir::ImplId,
617) -> Arc<ImplDatum<ChalkIr>> {
618 let _p = ra_prof::profile("impl_datum");
619 debug!("impl_datum {:?}", impl_id);
620 let impl_: Impl = from_chalk(db, impl_id);
621 match impl_ {
622 Impl::ImplBlock(impl_block) => impl_block_datum(db, krate, impl_id, impl_block),
623 Impl::ClosureFnTraitImpl(data) => closure_fn_trait_impl_datum(db, krate, data),
624 }
625 .unwrap_or_else(invalid_impl_datum)
626}
627
628fn impl_block_datum(
629 db: &impl HirDatabase,
630 krate: CrateId,
631 chalk_id: chalk_ir::ImplId,
632 impl_id: ImplId,
633) -> Option<Arc<ImplDatum<ChalkIr>>> {
634 let impl_data = db.impl_data(impl_id);
635 let resolver = impl_id.resolver(db);
636 let target_ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
637
638 // `CoerseUnsized` has one generic parameter for the target type.
639 let trait_ref =
640 TraitRef::from_hir(db, &resolver, impl_data.target_trait.as_ref()?, Some(target_ty))?;
641
642 let generic_params = db.generic_params(impl_id.into());
643 let bound_vars = Substs::bound_vars(&generic_params);
644 let trait_ref = trait_ref.subst(&bound_vars);
645 let trait_ = trait_ref.trait_;
646 let impl_type = if impl_id.module(db).krate == krate {
647 chalk_rust_ir::ImplType::Local
648 } else {
649 chalk_rust_ir::ImplType::External
650 };
651 let where_clauses = convert_where_clauses(db, impl_id.into(), &bound_vars);
652 let negative = impl_data.is_negative;
653 debug!(
654 "impl {:?}: {}{} where {:?}",
655 chalk_id,
656 if negative { "!" } else { "" },
657 trait_ref.display(db),
658 where_clauses
659 );
660 let trait_ref = trait_ref.to_chalk(db);
661
662 let polarity = if negative {
663 chalk_rust_ir::Polarity::Negative
664 } else {
665 chalk_rust_ir::Polarity::Positive
666 };
667
668 let impl_datum_bound = chalk_rust_ir::ImplDatumBound { trait_ref, where_clauses };
669 let trait_data = db.trait_data(trait_);
670 let associated_ty_value_ids = impl_data
671 .items
672 .iter()
673 .filter_map(|item| match item {
674 AssocItemId::TypeAliasId(type_alias) => Some(*type_alias),
675 _ => None,
676 })
677 .filter(|&type_alias| {
678 // don't include associated types that don't exist in the trait
679 let name = &db.type_alias_data(type_alias).name;
680 trait_data.associated_type_by_name(name).is_some()
681 })
682 .map(|type_alias| AssocTyValue::TypeAlias(type_alias).to_chalk(db))
683 .collect();
684 debug!("impl_datum: {:?}", impl_datum_bound);
685 let impl_datum = ImplDatum {
686 binders: make_binders(impl_datum_bound, bound_vars.len()),
687 impl_type,
688 polarity,
689 associated_ty_value_ids,
690 };
691 Some(Arc::new(impl_datum))
692}
693
694fn invalid_impl_datum() -> Arc<ImplDatum<ChalkIr>> {
695 let trait_ref = chalk_ir::TraitRef {
696 trait_id: UNKNOWN_TRAIT,
697 parameters: vec![chalk_ir::TyData::BoundVar(0).cast().intern().cast()],
698 };
699 let impl_datum_bound = chalk_rust_ir::ImplDatumBound { trait_ref, where_clauses: Vec::new() };
700 let impl_datum = ImplDatum {
701 binders: make_binders(impl_datum_bound, 1),
702 impl_type: chalk_rust_ir::ImplType::External,
703 polarity: chalk_rust_ir::Polarity::Positive,
704 associated_ty_value_ids: Vec::new(),
705 };
706 Arc::new(impl_datum)
707}
708
709fn closure_fn_trait_impl_datum(
710 db: &impl HirDatabase,
711 krate: CrateId,
712 data: super::ClosureFnTraitImplData,
713) -> Option<Arc<ImplDatum<ChalkIr>>> {
714 // for some closure |X, Y| -> Z:
715 // impl<T, U, V> Fn<(T, U)> for closure<fn(T, U) -> V> { Output = V }
716
717 let trait_ = get_fn_trait(db, krate, data.fn_trait)?; // get corresponding fn trait
718
719 // validate FnOnce trait, since we need it in the assoc ty value definition
720 // and don't want to return a valid value only to find out later that FnOnce
721 // is broken
722 let fn_once_trait = get_fn_trait(db, krate, super::FnTrait::FnOnce)?;
723 let _output = db.trait_data(fn_once_trait).associated_type_by_name(&name::OUTPUT_TYPE)?;
724
725 let num_args: u16 = match &db.body(data.def.into())[data.expr] {
726 crate::expr::Expr::Lambda { args, .. } => args.len() as u16,
727 _ => {
728 log::warn!("closure for closure type {:?} not found", data);
729 0
730 }
731 };
732
733 let arg_ty = Ty::apply(
734 TypeCtor::Tuple { cardinality: num_args },
735 Substs::builder(num_args as usize).fill_with_bound_vars(0).build(),
736 );
737 let sig_ty = Ty::apply(
738 TypeCtor::FnPtr { num_args },
739 Substs::builder(num_args as usize + 1).fill_with_bound_vars(0).build(),
740 );
741
742 let self_ty = Ty::apply_one(TypeCtor::Closure { def: data.def, expr: data.expr }, sig_ty);
743
744 let trait_ref = TraitRef {
745 trait_: trait_.into(),
746 substs: Substs::build_for_def(db, trait_).push(self_ty).push(arg_ty).build(),
747 };
748
749 let output_ty_id = AssocTyValue::ClosureFnTraitImplOutput(data.clone()).to_chalk(db);
750
751 let impl_type = chalk_rust_ir::ImplType::External;
752
753 let impl_datum_bound = chalk_rust_ir::ImplDatumBound {
754 trait_ref: trait_ref.to_chalk(db),
755 where_clauses: Vec::new(),
756 };
757 let impl_datum = ImplDatum {
758 binders: make_binders(impl_datum_bound, num_args as usize + 1),
759 impl_type,
760 polarity: chalk_rust_ir::Polarity::Positive,
761 associated_ty_value_ids: vec![output_ty_id],
762 };
763 Some(Arc::new(impl_datum))
764}
765
766pub(crate) fn associated_ty_value_query(
767 db: &impl HirDatabase,
768 krate: CrateId,
769 id: chalk_rust_ir::AssociatedTyValueId,
770) -> Arc<chalk_rust_ir::AssociatedTyValue<ChalkIr>> {
771 let data: AssocTyValue = from_chalk(db, id);
772 match data {
773 AssocTyValue::TypeAlias(type_alias) => {
774 type_alias_associated_ty_value(db, krate, type_alias)
775 }
776 AssocTyValue::ClosureFnTraitImplOutput(data) => {
777 closure_fn_trait_output_assoc_ty_value(db, krate, data)
778 }
779 }
780}
781
782fn type_alias_associated_ty_value(
783 db: &impl HirDatabase,
784 _krate: CrateId,
785 type_alias: TypeAliasId,
786) -> Arc<AssociatedTyValue<ChalkIr>> {
787 let type_alias_data = db.type_alias_data(type_alias);
788 let impl_id = match type_alias.lookup(db).container {
789 ContainerId::ImplId(it) => it,
790 _ => panic!("assoc ty value should be in impl"),
791 };
792
793 let impl_data = db.impl_data(impl_id);
794 let resolver = impl_id.resolver(db);
795 let target_ty = Ty::from_hir(db, &resolver, &impl_data.target_type);
796 let target_trait = impl_data
797 .target_trait
798 .as_ref()
799 .and_then(|trait_ref| TraitRef::from_hir(db, &resolver, &trait_ref, Some(target_ty)))
800 .expect("assoc ty value should not exist"); // we don't return any assoc ty values if the impl'd trait can't be resolved
801
802 let assoc_ty = db
803 .trait_data(target_trait.trait_)
804 .associated_type_by_name(&type_alias_data.name)
805 .expect("assoc ty value should not exist"); // validated when building the impl data as well
806 let generic_params = db.generic_params(impl_id.into());
807 let bound_vars = Substs::bound_vars(&generic_params);
808 let ty = db.ty(type_alias.into()).subst(&bound_vars);
809 let value_bound = chalk_rust_ir::AssociatedTyValueBound { ty: ty.to_chalk(db) };
810 let value = chalk_rust_ir::AssociatedTyValue {
811 impl_id: Impl::ImplBlock(impl_id.into()).to_chalk(db),
812 associated_ty_id: assoc_ty.to_chalk(db),
813 value: make_binders(value_bound, bound_vars.len()),
814 };
815 Arc::new(value)
816}
817
818fn closure_fn_trait_output_assoc_ty_value(
819 db: &impl HirDatabase,
820 krate: CrateId,
821 data: super::ClosureFnTraitImplData,
822) -> Arc<AssociatedTyValue<ChalkIr>> {
823 let impl_id = Impl::ClosureFnTraitImpl(data.clone()).to_chalk(db);
824
825 let num_args: u16 = match &db.body(data.def.into())[data.expr] {
826 crate::expr::Expr::Lambda { args, .. } => args.len() as u16,
827 _ => {
828 log::warn!("closure for closure type {:?} not found", data);
829 0
830 }
831 };
832
833 let output_ty = Ty::Bound(num_args.into());
834
835 let fn_once_trait =
836 get_fn_trait(db, krate, super::FnTrait::FnOnce).expect("assoc ty value should not exist");
837
838 let output_ty_id = db
839 .trait_data(fn_once_trait)
840 .associated_type_by_name(&name::OUTPUT_TYPE)
841 .expect("assoc ty value should not exist");
842
843 let value_bound = chalk_rust_ir::AssociatedTyValueBound { ty: output_ty.to_chalk(db) };
844
845 let value = chalk_rust_ir::AssociatedTyValue {
846 associated_ty_id: output_ty_id.to_chalk(db),
847 impl_id,
848 value: make_binders(value_bound, num_args as usize + 1),
849 };
850 Arc::new(value)
851}
852
853fn get_fn_trait(
854 db: &impl HirDatabase,
855 krate: CrateId,
856 fn_trait: super::FnTrait,
857) -> Option<TraitId> {
858 let target = db.lang_item(krate, fn_trait.lang_item_name().into())?;
859 match target {
860 LangItemTarget::TraitId(t) => Some(t),
861 _ => None,
862 }
863}
864
865fn id_from_chalk<T: InternKey>(chalk_id: chalk_ir::RawId) -> T {
866 T::from_intern_id(InternId::from(chalk_id.index))
867}
868fn id_to_chalk<T: InternKey>(salsa_id: T) -> chalk_ir::RawId {
869 chalk_ir::RawId { index: salsa_id.as_intern_id().as_u32() }
870}
871
872impl From<chalk_ir::StructId> for crate::ty::TypeCtorId {
873 fn from(struct_id: chalk_ir::StructId) -> Self {
874 id_from_chalk(struct_id.0)
875 }
876}
877
878impl From<crate::ty::TypeCtorId> for chalk_ir::StructId {
879 fn from(type_ctor_id: crate::ty::TypeCtorId) -> Self {
880 chalk_ir::StructId(id_to_chalk(type_ctor_id))
881 }
882}
883
884impl From<chalk_ir::ImplId> for crate::ty::traits::GlobalImplId {
885 fn from(impl_id: chalk_ir::ImplId) -> Self {
886 id_from_chalk(impl_id.0)
887 }
888}
889
890impl From<crate::ty::traits::GlobalImplId> for chalk_ir::ImplId {
891 fn from(impl_id: crate::ty::traits::GlobalImplId) -> Self {
892 chalk_ir::ImplId(id_to_chalk(impl_id))
893 }
894}
895
896impl From<chalk_rust_ir::AssociatedTyValueId> for crate::ty::traits::AssocTyValueId {
897 fn from(id: chalk_rust_ir::AssociatedTyValueId) -> Self {
898 id_from_chalk(id.0)
899 }
900}
901
902impl From<crate::ty::traits::AssocTyValueId> for chalk_rust_ir::AssociatedTyValueId {
903 fn from(assoc_ty_value_id: crate::ty::traits::AssocTyValueId) -> Self {
904 chalk_rust_ir::AssociatedTyValueId(id_to_chalk(assoc_ty_value_id))
905 }
906}
diff --git a/crates/ra_hir/src/ty/utils.rs b/crates/ra_hir/src/ty/utils.rs
deleted file mode 100644
index f82e6ac9b..000000000
--- a/crates/ra_hir/src/ty/utils.rs
+++ /dev/null
@@ -1,75 +0,0 @@
1//! Helper functions for working with def, which don't need to be a separate
2//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
3use std::sync::Arc;
4
5use hir_def::{
6 adt::VariantData,
7 db::DefDatabase,
8 resolver::{HasResolver, TypeNs},
9 type_ref::TypeRef,
10 TraitId, TypeAliasId, VariantId,
11};
12use hir_expand::name::{self, Name};
13
14// FIXME: this is wrong, b/c it can't express `trait T: PartialEq<()>`.
15// We should return a `TraitREf` here.
16fn direct_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec<TraitId> {
17 let resolver = trait_.resolver(db);
18 // returning the iterator directly doesn't easily work because of
19 // lifetime problems, but since there usually shouldn't be more than a
20 // few direct traits this should be fine (we could even use some kind of
21 // SmallVec if performance is a concern)
22 db.generic_params(trait_.into())
23 .where_predicates
24 .iter()
25 .filter_map(|pred| match &pred.type_ref {
26 TypeRef::Path(p) if p.as_ident() == Some(&name::SELF_TYPE) => pred.bound.as_path(),
27 _ => None,
28 })
29 .filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path) {
30 Some(TypeNs::TraitId(t)) => Some(t),
31 _ => None,
32 })
33 .collect()
34}
35
36/// Returns an iterator over the whole super trait hierarchy (including the
37/// trait itself).
38pub(super) fn all_super_traits(db: &impl DefDatabase, trait_: TraitId) -> Vec<TraitId> {
39 // we need to take care a bit here to avoid infinite loops in case of cycles
40 // (i.e. if we have `trait A: B; trait B: A;`)
41 let mut result = vec![trait_];
42 let mut i = 0;
43 while i < result.len() {
44 let t = result[i];
45 // yeah this is quadratic, but trait hierarchies should be flat
46 // enough that this doesn't matter
47 for tt in direct_super_traits(db, t) {
48 if !result.contains(&tt) {
49 result.push(tt);
50 }
51 }
52 i += 1;
53 }
54 result
55}
56
57pub(super) fn associated_type_by_name_including_super_traits(
58 db: &impl DefDatabase,
59 trait_: TraitId,
60 name: &Name,
61) -> Option<TypeAliasId> {
62 all_super_traits(db, trait_)
63 .into_iter()
64 .find_map(|t| db.trait_data(t).associated_type_by_name(name))
65}
66
67pub(super) fn variant_data(db: &impl DefDatabase, var: VariantId) -> Arc<VariantData> {
68 match var {
69 VariantId::StructId(it) => db.struct_data(it).variant_data.clone(),
70 VariantId::UnionId(it) => db.union_data(it).variant_data.clone(),
71 VariantId::EnumVariantId(it) => {
72 db.enum_data(it.parent).variants[it.local_id].variant_data.clone()
73 }
74 }
75}