aboutsummaryrefslogtreecommitdiff
path: root/lib/chibios-contrib/ext/mcux-sdk/devices/MIMXRT1051/drivers/fsl_clock.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/chibios-contrib/ext/mcux-sdk/devices/MIMXRT1051/drivers/fsl_clock.c')
-rw-r--r--lib/chibios-contrib/ext/mcux-sdk/devices/MIMXRT1051/drivers/fsl_clock.c1505
1 files changed, 1505 insertions, 0 deletions
diff --git a/lib/chibios-contrib/ext/mcux-sdk/devices/MIMXRT1051/drivers/fsl_clock.c b/lib/chibios-contrib/ext/mcux-sdk/devices/MIMXRT1051/drivers/fsl_clock.c
new file mode 100644
index 000000000..11926c5ee
--- /dev/null
+++ b/lib/chibios-contrib/ext/mcux-sdk/devices/MIMXRT1051/drivers/fsl_clock.c
@@ -0,0 +1,1505 @@
1/*
2 * Copyright 2017 - 2020 NXP
3 * All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8#include "fsl_clock.h"
9/* Component ID definition, used by tools. */
10#ifndef FSL_COMPONENT_ID
11#define FSL_COMPONENT_ID "platform.drivers.clock"
12#endif
13
14/*******************************************************************************
15 * Definitions
16 ******************************************************************************/
17/* To make full use of CM7 hardware FPU, use double instead of uint64_t in clock driver to
18achieve better performance, it is depend on the IDE Floating point settings, if double precision is selected
19in IDE, clock_64b_t will switch to double type automatically. only support IAR and MDK here */
20#if __FPU_USED
21
22#if (defined(__ICCARM__))
23
24#if (__ARMVFP__ >= __ARMFPV5__) && \
25 (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
26typedef double clock_64b_t;
27#else
28typedef uint64_t clock_64b_t;
29#endif
30
31#elif (defined(__GNUC__))
32
33#if (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
34typedef double clock_64b_t;
35#else
36typedef uint64_t clock_64b_t;
37#endif
38
39#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
40
41#if defined __TARGET_FPU_FPV5_D16
42typedef double clock_64b_t;
43#else
44typedef uint64_t clock_64b_t;
45#endif
46
47#else
48typedef uint64_t clock_64b_t;
49#endif
50
51#else
52typedef uint64_t clock_64b_t;
53#endif
54
55/*******************************************************************************
56 * Variables
57 ******************************************************************************/
58
59/* External XTAL (OSC) clock frequency. */
60volatile uint32_t g_xtalFreq;
61/* External RTC XTAL clock frequency. */
62volatile uint32_t g_rtcXtalFreq;
63
64/*******************************************************************************
65 * Prototypes
66 ******************************************************************************/
67
68/*!
69 * @brief Get the periph clock frequency.
70 *
71 * @return Periph clock frequency in Hz.
72 */
73static uint32_t CLOCK_GetPeriphClkFreq(void);
74
75/*!
76 * @brief Get the frequency of PLL USB1 software clock.
77 *
78 * @return The frequency of PLL USB1 software clock.
79 */
80static uint32_t CLOCK_GetPllUsb1SWFreq(void);
81
82/*******************************************************************************
83 * Code
84 ******************************************************************************/
85
86static uint32_t CLOCK_GetPeriphClkFreq(void)
87{
88 uint32_t freq;
89
90 /* Periph_clk2_clk ---> Periph_clk */
91 if ((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK) != 0U)
92 {
93 switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
94 {
95 /* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
96 case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
97 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
98 break;
99
100 /* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
101 case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
102 freq = CLOCK_GetOscFreq();
103 break;
104
105 case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
106 freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
107 break;
108
109 case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
110 default:
111 freq = 0U;
112 break;
113 }
114
115 freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
116 }
117 /* Pre_Periph_clk ---> Periph_clk */
118 else
119 {
120 switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
121 {
122 /* PLL2 ---> Pre_Periph_clk ---> Periph_clk */
123 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
124 freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
125 break;
126
127 /* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */
128 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
129 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
130 break;
131
132 /* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */
133 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
134 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
135 break;
136
137 /* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */
138 case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
139 freq = CLOCK_GetPllFreq(kCLOCK_PllArm) /
140 (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U);
141 break;
142
143 default:
144 freq = 0U;
145 break;
146 }
147 }
148
149 return freq;
150}
151
152static uint32_t CLOCK_GetPllUsb1SWFreq(void)
153{
154 uint32_t freq;
155
156 switch ((CCM->CCSR & CCM_CCSR_PLL3_SW_CLK_SEL_MASK) >> CCM_CCSR_PLL3_SW_CLK_SEL_SHIFT)
157 {
158 case 0:
159 {
160 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
161 break;
162 }
163 case 1:
164 {
165 freq = 24000000UL;
166 break;
167 }
168 default:
169 freq = 0UL;
170 break;
171 }
172
173 return freq;
174}
175
176/*!
177 * brief Initialize the external 24MHz clock.
178 *
179 * This function supports two modes:
180 * 1. Use external crystal oscillator.
181 * 2. Bypass the external crystal oscillator, using input source clock directly.
182 *
183 * After this function, please call ref CLOCK_SetXtal0Freq to inform clock driver
184 * the external clock frequency.
185 *
186 * param bypassXtalOsc Pass in true to bypass the external crystal oscillator.
187 * note This device does not support bypass external crystal oscillator, so
188 * the input parameter should always be false.
189 */
190void CLOCK_InitExternalClk(bool bypassXtalOsc)
191{
192 /* This device does not support bypass XTAL OSC. */
193 assert(!bypassXtalOsc);
194
195 CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */
196 while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0U)
197 {
198 }
199 CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */
200 while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0UL)
201 {
202 }
203 CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
204}
205
206/*!
207 * brief Deinitialize the external 24MHz clock.
208 *
209 * This function disables the external 24MHz clock.
210 *
211 * After this function, please call ref CLOCK_SetXtal0Freq to set external clock
212 * frequency to 0.
213 */
214void CLOCK_DeinitExternalClk(void)
215{
216 CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
217}
218
219/*!
220 * brief Switch the OSC.
221 *
222 * This function switches the OSC source for SoC.
223 *
224 * param osc OSC source to switch to.
225 */
226void CLOCK_SwitchOsc(clock_osc_t osc)
227{
228 if (osc == kCLOCK_RcOsc)
229 {
230 XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK;
231 }
232 else
233 {
234 XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
235 }
236}
237
238/*!
239 * brief Initialize the RC oscillator 24MHz clock.
240 */
241void CLOCK_InitRcOsc24M(void)
242{
243 XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
244}
245
246/*!
247 * brief Power down the RCOSC 24M clock.
248 */
249void CLOCK_DeinitRcOsc24M(void)
250{
251 XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
252}
253
254/*!
255 * brief Gets the AHB clock frequency.
256 *
257 * return The AHB clock frequency value in hertz.
258 */
259uint32_t CLOCK_GetAhbFreq(void)
260{
261 return CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
262}
263
264/*!
265 * brief Gets the SEMC clock frequency.
266 *
267 * return The SEMC clock frequency value in hertz.
268 */
269uint32_t CLOCK_GetSemcFreq(void)
270{
271 uint32_t freq;
272
273 /* SEMC alternative clock ---> SEMC Clock */
274 if ((CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK) != 0U)
275 {
276 /* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
277 if ((CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK) != 0U)
278 {
279 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
280 }
281 /* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
282 else
283 {
284 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
285 }
286 }
287 /* Periph_clk ---> SEMC Clock */
288 else
289 {
290 freq = CLOCK_GetPeriphClkFreq();
291 }
292
293 freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
294
295 return freq;
296}
297
298/*!
299 * brief Gets the IPG clock frequency.
300 *
301 * return The IPG clock frequency value in hertz.
302 */
303uint32_t CLOCK_GetIpgFreq(void)
304{
305 return CLOCK_GetAhbFreq() / (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
306}
307
308uint32_t CLOCK_GetPerClkFreq(void)
309{
310 uint32_t freq;
311
312 /* Osc_clk ---> PER Clock*/
313 if ((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_CLK_SEL_MASK) != 0U)
314 {
315 freq = CLOCK_GetOscFreq();
316 }
317 /* Periph_clk ---> AHB Clock ---> IPG Clock ---> PER Clock */
318 else
319 {
320 freq = CLOCK_GetIpgFreq();
321 }
322
323 freq /= (((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_PODF_MASK) >> CCM_CSCMR1_PERCLK_PODF_SHIFT) + 1U);
324
325 return freq;
326}
327
328/*!
329 * brief Gets the clock frequency for a specific clock name.
330 *
331 * This function checks the current clock configurations and then calculates
332 * the clock frequency for a specific clock name defined in clock_name_t.
333 *
334 * param clockName Clock names defined in clock_name_t
335 * return Clock frequency value in hertz
336 */
337uint32_t CLOCK_GetFreq(clock_name_t name)
338{
339 uint32_t freq;
340
341 switch (name)
342 {
343 case kCLOCK_CpuClk:
344 case kCLOCK_AhbClk:
345 freq = CLOCK_GetAhbFreq();
346 break;
347
348 case kCLOCK_SemcClk:
349 freq = CLOCK_GetSemcFreq();
350 break;
351
352 case kCLOCK_IpgClk:
353 freq = CLOCK_GetIpgFreq();
354 break;
355
356 case kCLOCK_PerClk:
357 freq = CLOCK_GetPerClkFreq();
358 break;
359
360 case kCLOCK_OscClk:
361 freq = CLOCK_GetOscFreq();
362 break;
363 case kCLOCK_RtcClk:
364 freq = CLOCK_GetRtcFreq();
365 break;
366 case kCLOCK_ArmPllClk:
367 freq = CLOCK_GetPllFreq(kCLOCK_PllArm);
368 break;
369 case kCLOCK_Usb1PllClk:
370 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
371 break;
372 case kCLOCK_Usb1PllPfd0Clk:
373 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0);
374 break;
375 case kCLOCK_Usb1PllPfd1Clk:
376 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
377 break;
378 case kCLOCK_Usb1PllPfd2Clk:
379 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
380 break;
381 case kCLOCK_Usb1PllPfd3Clk:
382 freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
383 break;
384 case kCLOCK_Usb1SwClk:
385 freq = CLOCK_GetPllUsb1SWFreq();
386 break;
387 case kCLOCK_Usb1Sw120MClk:
388 freq = CLOCK_GetPllUsb1SWFreq() / 4UL;
389 break;
390 case kCLOCK_Usb1Sw60MClk:
391 freq = CLOCK_GetPllUsb1SWFreq() / 8UL;
392 break;
393 case kCLOCK_Usb1Sw80MClk:
394 freq = CLOCK_GetPllUsb1SWFreq() / 6UL;
395 break;
396 case kCLOCK_Usb2PllClk:
397 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb2);
398 break;
399 case kCLOCK_SysPllClk:
400 freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
401 break;
402 case kCLOCK_SysPllPfd0Clk:
403 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
404 break;
405 case kCLOCK_SysPllPfd1Clk:
406 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1);
407 break;
408 case kCLOCK_SysPllPfd2Clk:
409 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
410 break;
411 case kCLOCK_SysPllPfd3Clk:
412 freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
413 break;
414 case kCLOCK_EnetPll0Clk:
415 freq = CLOCK_GetPllFreq(kCLOCK_PllEnet);
416 break;
417 case kCLOCK_EnetPll1Clk:
418 freq = CLOCK_GetPllFreq(kCLOCK_PllEnet25M);
419 break;
420 case kCLOCK_AudioPllClk:
421 freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
422 break;
423 case kCLOCK_VideoPllClk:
424 freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
425 break;
426 default:
427 freq = 0U;
428 break;
429 }
430
431 return freq;
432}
433
434/*!
435 * brief Gets the frequency of selected clock root.
436 *
437 * param clockRoot The clock root used to get the frequency, please refer to @ref clock_root_t.
438 * return The frequency of selected clock root.
439 */
440uint32_t CLOCK_GetClockRootFreq(clock_root_t clockRoot)
441{
442 const clock_name_t clockRootSourceArray[][6] = CLOCK_ROOT_SOUCE;
443 const clock_mux_t clockRootMuxTupleArray[] = CLOCK_ROOT_MUX_TUPLE;
444 const clock_div_t clockRootDivTupleArray[][2] = CLOCK_ROOT_DIV_TUPLE;
445 uint32_t freq = 0UL;
446 clock_mux_t clockRootMuxTuple = clockRootMuxTupleArray[(uint8_t)clockRoot];
447 clock_div_t clockRootPreDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][0];
448 clock_div_t clockRootPostDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][1];
449 uint32_t clockRootMuxValue = (CCM_TUPLE_REG(CCM, clockRootMuxTuple) & CCM_TUPLE_MASK(clockRootMuxTuple)) >>
450 CCM_TUPLE_SHIFT(clockRootMuxTuple);
451 clock_name_t clockSourceName;
452
453 clockSourceName = clockRootSourceArray[(uint8_t)clockRoot][clockRootMuxValue];
454
455 assert(clockSourceName != kCLOCK_NoneName);
456
457 freq = CLOCK_GetFreq(clockSourceName);
458
459 if (clockRootPreDivTuple != kCLOCK_NonePreDiv)
460 {
461 freq /= ((CCM_TUPLE_REG(CCM, clockRootPreDivTuple) & CCM_TUPLE_MASK(clockRootPreDivTuple)) >>
462 CCM_TUPLE_SHIFT(clockRootPreDivTuple)) +
463 1UL;
464 }
465
466 freq /= ((CCM_TUPLE_REG(CCM, clockRootPostDivTuple) & CCM_TUPLE_MASK(clockRootPostDivTuple)) >>
467 CCM_TUPLE_SHIFT(clockRootPostDivTuple)) +
468 1UL;
469
470 return freq;
471}
472
473/*! brief Enable USB HS clock.
474 *
475 * This function only enables the access to USB HS prepheral, upper layer
476 * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
477 * clock to use USB HS.
478 *
479 * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
480 * param freq USB HS does not care about the clock source, so this parameter is ignored.
481 * retval true The clock is set successfully.
482 * retval false The clock source is invalid to get proper USB HS clock.
483 */
484bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
485{
486 uint32_t i;
487 CCM->CCGR6 |= CCM_CCGR6_CG0_MASK;
488 USB1->USBCMD |= USBHS_USBCMD_RST_MASK;
489
490 /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
491 for (i = 0; i < 400000U; i++)
492 {
493 __ASM("nop");
494 }
495 PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) |
496 (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
497 return true;
498}
499
500/*! brief Enable USB HS clock.
501 *
502 * This function only enables the access to USB HS prepheral, upper layer
503 * should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
504 * clock to use USB HS.
505 *
506 * param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
507 * param freq USB HS does not care about the clock source, so this parameter is ignored.
508 * retval true The clock is set successfully.
509 * retval false The clock source is invalid to get proper USB HS clock.
510 */
511bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
512{
513 uint32_t i = 0;
514 CCM->CCGR6 |= CCM_CCGR6_CG0_MASK;
515 USB2->USBCMD |= USBHS_USBCMD_RST_MASK;
516
517 /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
518 for (i = 0; i < 400000U; i++)
519 {
520 __ASM("nop");
521 }
522 PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) |
523 (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
524 return true;
525}
526
527/*! brief Enable USB HS PHY PLL clock.
528 *
529 * This function enables the internal 480MHz USB PHY PLL clock.
530 *
531 * param src USB HS PHY PLL clock source.
532 * param freq The frequency specified by src.
533 * retval true The clock is set successfully.
534 * retval false The clock source is invalid to get proper USB HS clock.
535 */
536bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
537{
538 const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
539 if ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_ENABLE_MASK) != 0U)
540 {
541 CCM_ANALOG->PLL_USB1 |= CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
542 }
543 else
544 {
545 CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
546 }
547 USBPHY1->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
548 USBPHY1->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
549
550 USBPHY1->PWD = 0;
551 USBPHY1->CTRL |= USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK | USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
552 USBPHY_CTRL_ENUTMILEVEL2_MASK | USBPHY_CTRL_ENUTMILEVEL3_MASK;
553 return true;
554}
555
556/*! brief Disable USB HS PHY PLL clock.
557 *
558 * This function disables USB HS PHY PLL clock.
559 */
560void CLOCK_DisableUsbhs0PhyPllClock(void)
561{
562 CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
563 USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
564}
565
566/*!
567 * brief Initialize the ARM PLL.
568 *
569 * This function initialize the ARM PLL with specific settings
570 *
571 * param config configuration to set to PLL.
572 */
573void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
574{
575 /* Bypass PLL first */
576 CCM_ANALOG->PLL_ARM = (CCM_ANALOG->PLL_ARM & (~CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC_MASK)) |
577 CCM_ANALOG_PLL_ARM_BYPASS_MASK | CCM_ANALOG_PLL_ARM_BYPASS_CLK_SRC(config->src);
578
579 CCM_ANALOG->PLL_ARM =
580 (CCM_ANALOG->PLL_ARM & (~(CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK | CCM_ANALOG_PLL_ARM_POWERDOWN_MASK))) |
581 CCM_ANALOG_PLL_ARM_ENABLE_MASK | CCM_ANALOG_PLL_ARM_DIV_SELECT(config->loopDivider);
582
583 while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0UL)
584 {
585 }
586
587 /* Disable Bypass */
588 CCM_ANALOG->PLL_ARM &= ~CCM_ANALOG_PLL_ARM_BYPASS_MASK;
589}
590
591/*!
592 * brief De-initialize the ARM PLL.
593 */
594void CLOCK_DeinitArmPll(void)
595{
596 CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK;
597}
598
599/*!
600 * brief Initialize the System PLL.
601 *
602 * This function initializes the System PLL with specific settings
603 *
604 * param config Configuration to set to PLL.
605 */
606void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
607{
608 /* Bypass PLL first */
609 CCM_ANALOG->PLL_SYS = (CCM_ANALOG->PLL_SYS & (~CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_MASK)) |
610 CCM_ANALOG_PLL_SYS_BYPASS_MASK | CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC(config->src);
611
612 CCM_ANALOG->PLL_SYS =
613 (CCM_ANALOG->PLL_SYS & (~(CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK | CCM_ANALOG_PLL_SYS_POWERDOWN_MASK))) |
614 CCM_ANALOG_PLL_SYS_ENABLE_MASK | CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);
615
616 /* Initialize the fractional mode */
617 CCM_ANALOG->PLL_SYS_NUM = CCM_ANALOG_PLL_SYS_NUM_A(config->numerator);
618 CCM_ANALOG->PLL_SYS_DENOM = CCM_ANALOG_PLL_SYS_DENOM_B(config->denominator);
619
620 /* Initialize the spread spectrum mode */
621 CCM_ANALOG->PLL_SYS_SS = CCM_ANALOG_PLL_SYS_SS_STEP(config->ss_step) |
622 CCM_ANALOG_PLL_SYS_SS_ENABLE(config->ss_enable) |
623 CCM_ANALOG_PLL_SYS_SS_STOP(config->ss_stop);
624
625 while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0UL)
626 {
627 }
628
629 /* Disable Bypass */
630 CCM_ANALOG->PLL_SYS &= ~CCM_ANALOG_PLL_SYS_BYPASS_MASK;
631}
632
633/*!
634 * brief De-initialize the System PLL.
635 */
636void CLOCK_DeinitSysPll(void)
637{
638 CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
639}
640
641/*!
642 * brief Initialize the USB1 PLL.
643 *
644 * This function initializes the USB1 PLL with specific settings
645 *
646 * param config Configuration to set to PLL.
647 */
648void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
649{
650 /* Bypass PLL first */
651 CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_MASK)) |
652 CCM_ANALOG_PLL_USB1_BYPASS_MASK | CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC(config->src);
653
654 CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK)) |
655 CCM_ANALOG_PLL_USB1_ENABLE_MASK | CCM_ANALOG_PLL_USB1_POWER_MASK |
656 CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK | CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);
657
658 while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0UL)
659 {
660 }
661
662 /* Disable Bypass */
663 CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_BYPASS_MASK;
664}
665
666/*!
667 * brief Deinitialize the USB1 PLL.
668 */
669void CLOCK_DeinitUsb1Pll(void)
670{
671 CCM_ANALOG->PLL_USB1 = 0U;
672}
673
674/*!
675 * brief Initialize the USB2 PLL.
676 *
677 * This function initializes the USB2 PLL with specific settings
678 *
679 * param config Configuration to set to PLL.
680 */
681void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
682{
683 /* Bypass PLL first */
684 CCM_ANALOG->PLL_USB2 = (CCM_ANALOG->PLL_USB2 & (~CCM_ANALOG_PLL_USB2_BYPASS_CLK_SRC_MASK)) |
685 CCM_ANALOG_PLL_USB2_BYPASS_MASK | CCM_ANALOG_PLL_USB2_BYPASS_CLK_SRC(config->src);
686
687 CCM_ANALOG->PLL_USB2 = (CCM_ANALOG->PLL_USB2 & (~CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK)) |
688 CCM_ANALOG_PLL_USB2_ENABLE_MASK | CCM_ANALOG_PLL_USB2_POWER_MASK |
689 CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK | CCM_ANALOG_PLL_USB2_DIV_SELECT(config->loopDivider);
690
691 while ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_LOCK_MASK) == 0UL)
692 {
693 }
694
695 /* Disable Bypass */
696 CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_BYPASS_MASK;
697}
698
699/*!
700 * brief Deinitialize the USB2 PLL.
701 */
702void CLOCK_DeinitUsb2Pll(void)
703{
704 CCM_ANALOG->PLL_USB2 = 0U;
705}
706
707/*!
708 * brief Initializes the Audio PLL.
709 *
710 * This function initializes the Audio PLL with specific settings
711 *
712 * param config Configuration to set to PLL.
713 */
714void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
715{
716 uint32_t pllAudio;
717 uint32_t misc2 = 0;
718
719 /* Bypass PLL first */
720 CCM_ANALOG->PLL_AUDIO = (CCM_ANALOG->PLL_AUDIO & (~CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC_MASK)) |
721 CCM_ANALOG_PLL_AUDIO_BYPASS_MASK | CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC(config->src);
722
723 CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator);
724 CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator);
725
726 /*
727 * Set post divider:
728 *
729 * ------------------------------------------------------------------------
730 * | config->postDivider | PLL_AUDIO[POST_DIV_SELECT] | MISC2[AUDIO_DIV] |
731 * ------------------------------------------------------------------------
732 * | 1 | 2 | 0 |
733 * ------------------------------------------------------------------------
734 * | 2 | 1 | 0 |
735 * ------------------------------------------------------------------------
736 * | 4 | 2 | 3 |
737 * ------------------------------------------------------------------------
738 * | 8 | 1 | 3 |
739 * ------------------------------------------------------------------------
740 * | 16 | 0 | 3 |
741 * ------------------------------------------------------------------------
742 */
743 pllAudio =
744 (CCM_ANALOG->PLL_AUDIO & (~(CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK | CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK))) |
745 CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider);
746
747 switch (config->postDivider)
748 {
749 case 16:
750 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0);
751 misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
752 break;
753
754 case 8:
755 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
756 misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
757 break;
758
759 case 4:
760 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
761 misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
762 break;
763
764 case 2:
765 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
766 break;
767
768 default:
769 pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
770 break;
771 }
772
773 CCM_ANALOG->MISC2 =
774 (CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK)) | misc2;
775
776 CCM_ANALOG->PLL_AUDIO = pllAudio;
777
778 while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0UL)
779 {
780 }
781
782 /* Disable Bypass */
783 CCM_ANALOG->PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS_MASK;
784}
785
786/*!
787 * brief De-initialize the Audio PLL.
788 */
789void CLOCK_DeinitAudioPll(void)
790{
791 CCM_ANALOG->PLL_AUDIO = (uint32_t)CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
792}
793
794/*!
795 * brief Initialize the video PLL.
796 *
797 * This function configures the Video PLL with specific settings
798 *
799 * param config configuration to set to PLL.
800 */
801void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
802{
803 uint32_t pllVideo;
804 uint32_t misc2 = 0;
805
806 /* Bypass PLL first */
807 CCM_ANALOG->PLL_VIDEO = (CCM_ANALOG->PLL_VIDEO & (~CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC_MASK)) |
808 CCM_ANALOG_PLL_VIDEO_BYPASS_MASK | CCM_ANALOG_PLL_VIDEO_BYPASS_CLK_SRC(config->src);
809
810 CCM_ANALOG->PLL_VIDEO_NUM = CCM_ANALOG_PLL_VIDEO_NUM_A(config->numerator);
811 CCM_ANALOG->PLL_VIDEO_DENOM = CCM_ANALOG_PLL_VIDEO_DENOM_B(config->denominator);
812
813 /*
814 * Set post divider:
815 *
816 * ------------------------------------------------------------------------
817 * | config->postDivider | PLL_VIDEO[POST_DIV_SELECT] | MISC2[VIDEO_DIV] |
818 * ------------------------------------------------------------------------
819 * | 1 | 2 | 0 |
820 * ------------------------------------------------------------------------
821 * | 2 | 1 | 0 |
822 * ------------------------------------------------------------------------
823 * | 4 | 2 | 3 |
824 * ------------------------------------------------------------------------
825 * | 8 | 1 | 3 |
826 * ------------------------------------------------------------------------
827 * | 16 | 0 | 3 |
828 * ------------------------------------------------------------------------
829 */
830 pllVideo =
831 (CCM_ANALOG->PLL_VIDEO & (~(CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK | CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK))) |
832 CCM_ANALOG_PLL_VIDEO_ENABLE_MASK | CCM_ANALOG_PLL_VIDEO_DIV_SELECT(config->loopDivider);
833
834 switch (config->postDivider)
835 {
836 case 16:
837 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0);
838 misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
839 break;
840
841 case 8:
842 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
843 misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
844 break;
845
846 case 4:
847 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
848 misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
849 break;
850
851 case 2:
852 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
853 break;
854
855 default:
856 pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
857 break;
858 }
859
860 CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~CCM_ANALOG_MISC2_VIDEO_DIV_MASK) | misc2;
861
862 CCM_ANALOG->PLL_VIDEO = pllVideo;
863
864 while ((CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) == 0UL)
865 {
866 }
867
868 /* Disable Bypass */
869 CCM_ANALOG->PLL_VIDEO &= ~CCM_ANALOG_PLL_VIDEO_BYPASS_MASK;
870}
871
872/*!
873 * brief De-initialize the Video PLL.
874 */
875void CLOCK_DeinitVideoPll(void)
876{
877 CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK;
878}
879
880/*!
881 * brief Initialize the ENET PLL.
882 *
883 * This function initializes the ENET PLL with specific settings.
884 *
885 * param config Configuration to set to PLL.
886 */
887void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
888{
889 uint32_t enet_pll = CCM_ANALOG_PLL_ENET_DIV_SELECT(config->loopDivider);
890
891 CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK)) |
892 CCM_ANALOG_PLL_ENET_BYPASS_MASK | CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC(config->src);
893
894 if (config->enableClkOutput)
895 {
896 enet_pll |= CCM_ANALOG_PLL_ENET_ENABLE_MASK;
897 }
898
899 if (config->enableClkOutput25M)
900 {
901 enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
902 }
903
904 CCM_ANALOG->PLL_ENET =
905 (CCM_ANALOG->PLL_ENET & (~(CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_POWERDOWN_MASK))) |
906 enet_pll;
907
908 /* Wait for stable */
909 while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0UL)
910 {
911 }
912
913 /* Disable Bypass */
914 CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK;
915}
916
917/*!
918 * brief Deinitialize the ENET PLL.
919 *
920 * This function disables the ENET PLL.
921 */
922void CLOCK_DeinitEnetPll(void)
923{
924 CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
925}
926
927/*!
928 * brief Get current PLL output frequency.
929 *
930 * This function get current output frequency of specific PLL
931 *
932 * param pll pll name to get frequency.
933 * return The PLL output frequency in hertz.
934 */
935uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
936{
937 uint32_t freq;
938 uint32_t divSelect;
939 clock_64b_t freqTmp;
940
941 const uint32_t enetRefClkFreq[] = {
942 25000000U, /* 25M */
943 50000000U, /* 50M */
944 100000000U, /* 100M */
945 125000000U /* 125M */
946 };
947
948 /* check if PLL is enabled */
949 if (!CLOCK_IsPllEnabled(CCM_ANALOG, pll))
950 {
951 return 0U;
952 }
953
954 /* get pll reference clock */
955 freq = CLOCK_GetPllBypassRefClk(CCM_ANALOG, pll);
956
957 /* check if pll is bypassed */
958 if (CLOCK_IsPllBypassed(CCM_ANALOG, pll))
959 {
960 return freq;
961 }
962
963 switch (pll)
964 {
965 case kCLOCK_PllArm:
966 freq = ((freq * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
967 CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >>
968 1U);
969 break;
970 case kCLOCK_PllSys:
971 /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
972 freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_SYS_NUM)));
973 freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_SYS_DENOM));
974
975 if ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK) != 0U)
976 {
977 freq *= 22U;
978 }
979 else
980 {
981 freq *= 20U;
982 }
983
984 freq += (uint32_t)freqTmp;
985 break;
986
987 case kCLOCK_PllUsb1:
988 freq = (freq * (((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) != 0UL) ? 22U : 20U));
989 break;
990
991 case kCLOCK_PllAudio:
992 /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
993 divSelect =
994 (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;
995
996 freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_NUM)));
997 freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_DENOM));
998
999 freq = freq * divSelect + (uint32_t)freqTmp;
1000
1001 /* AUDIO PLL output = PLL output frequency / POSTDIV. */
1002
1003 /*
1004 * Post divider:
1005 *
1006 * PLL_AUDIO[POST_DIV_SELECT]:
1007 * 0x00: 4
1008 * 0x01: 2
1009 * 0x02: 1
1010 *
1011 * MISC2[AUDO_DIV]:
1012 * 0x00: 1
1013 * 0x01: 2
1014 * 0x02: 1
1015 * 0x03: 4
1016 */
1017 switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK)
1018 {
1019 case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U):
1020 freq = freq >> 2U;
1021 break;
1022
1023 case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U):
1024 freq = freq >> 1U;
1025 break;
1026
1027 case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2U):
1028 freq = freq >> 0U;
1029 break;
1030
1031 default:
1032 assert(false);
1033 break;
1034 }
1035
1036 switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK))
1037 {
1038 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
1039 freq >>= 2U;
1040 break;
1041
1042 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
1043 freq >>= 1U;
1044 break;
1045
1046 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0):
1047 case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0):
1048 freq >>= 0U;
1049 break;
1050
1051 default:
1052 assert(false);
1053 break;
1054 }
1055 break;
1056
1057 case kCLOCK_PllVideo:
1058 /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
1059 divSelect =
1060 (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;
1061
1062 freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_NUM)));
1063 freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_VIDEO_DENOM));
1064 freq = freq * divSelect + (uint32_t)freqTmp;
1065
1066 /* VIDEO PLL output = PLL output frequency / POSTDIV. */
1067
1068 /*
1069 * Post divider:
1070 *
1071 * PLL_VIDEO[POST_DIV_SELECT]:
1072 * 0x00: 4
1073 * 0x01: 2
1074 * 0x02: 1
1075 *
1076 * MISC2[VIDEO_DIV]:
1077 * 0x00: 1
1078 * 0x01: 2
1079 * 0x02: 1
1080 * 0x03: 4
1081 */
1082 switch (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK)
1083 {
1084 case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0U):
1085 freq = freq >> 2U;
1086 break;
1087
1088 case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1U):
1089 freq = freq >> 1U;
1090 break;
1091
1092 case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2U):
1093 freq = freq >> 0U;
1094 break;
1095
1096 default:
1097 assert(false);
1098 break;
1099 }
1100
1101 switch (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV_MASK)
1102 {
1103 case CCM_ANALOG_MISC2_VIDEO_DIV(3U):
1104 freq >>= 2U;
1105 break;
1106
1107 case CCM_ANALOG_MISC2_VIDEO_DIV(1U):
1108 freq >>= 1U;
1109 break;
1110
1111 case CCM_ANALOG_MISC2_VIDEO_DIV(0U):
1112 case CCM_ANALOG_MISC2_VIDEO_DIV(2U):
1113 freq >>= 0U;
1114 break;
1115
1116 default:
1117 assert(false);
1118 break;
1119 }
1120 break;
1121 case kCLOCK_PllEnet:
1122 divSelect =
1123 (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_ENET_DIV_SELECT_SHIFT;
1124 freq = enetRefClkFreq[divSelect];
1125 break;
1126
1127 case kCLOCK_PllEnet25M:
1128 /* ref_enetpll1 if fixed at 25MHz. */
1129 freq = 25000000UL;
1130 break;
1131
1132 case kCLOCK_PllUsb2:
1133 freq = (freq * (((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK) != 0U) ? 22U : 20U));
1134 break;
1135 default:
1136 freq = 0U;
1137 break;
1138 }
1139
1140 return freq;
1141}
1142
1143/*!
1144 * brief Initialize the System PLL PFD.
1145 *
1146 * This function initializes the System PLL PFD. During new value setting,
1147 * the clock output is disabled to prevent glitch.
1148 *
1149 * param pfd Which PFD clock to enable.
1150 * param pfdFrac The PFD FRAC value.
1151 * note It is recommended that PFD settings are kept between 12-35.
1152 */
1153void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
1154{
1155 uint32_t pfdIndex = (uint32_t)pfd;
1156 uint32_t pfd528;
1157
1158 pfd528 = CCM_ANALOG->PFD_528 &
1159 ~(((uint32_t)((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_528_PFD0_FRAC_MASK)
1160 << (8UL * pfdIndex)));
1161
1162 /* Disable the clock output first. */
1163 CCM_ANALOG->PFD_528 = pfd528 | ((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * pfdIndex));
1164
1165 /* Set the new value and enable output. */
1166 CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex));
1167}
1168
1169/*!
1170 * brief De-initialize the System PLL PFD.
1171 *
1172 * This function disables the System PLL PFD.
1173 *
1174 * param pfd Which PFD clock to disable.
1175 */
1176void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
1177{
1178 CCM_ANALOG->PFD_528 |= (uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8U * (uint8_t)pfd);
1179}
1180
1181/*!
1182 * brief Initialize the USB1 PLL PFD.
1183 *
1184 * This function initializes the USB1 PLL PFD. During new value setting,
1185 * the clock output is disabled to prevent glitch.
1186 *
1187 * param pfd Which PFD clock to enable.
1188 * param pfdFrac The PFD FRAC value.
1189 * note It is recommended that PFD settings are kept between 12-35.
1190 */
1191void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
1192{
1193 uint32_t pfdIndex = (uint32_t)pfd;
1194 uint32_t pfd480;
1195
1196 pfd480 = CCM_ANALOG->PFD_480 &
1197 ~(((uint32_t)((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_480_PFD0_FRAC_MASK)
1198 << (8UL * pfdIndex)));
1199
1200 /* Disable the clock output first. */
1201 CCM_ANALOG->PFD_480 = pfd480 | ((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * pfdIndex));
1202
1203 /* Set the new value and enable output. */
1204 CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex));
1205}
1206
1207/*!
1208 * brief De-initialize the USB1 PLL PFD.
1209 *
1210 * This function disables the USB1 PLL PFD.
1211 *
1212 * param pfd Which PFD clock to disable.
1213 */
1214void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
1215{
1216 CCM_ANALOG->PFD_480 |= (uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * (uint8_t)pfd);
1217}
1218
1219/*!
1220 * brief Get current System PLL PFD output frequency.
1221 *
1222 * This function get current output frequency of specific System PLL PFD
1223 *
1224 * param pfd pfd name to get frequency.
1225 * return The PFD output frequency in hertz.
1226 */
1227uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
1228{
1229 uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
1230
1231 switch (pfd)
1232 {
1233 case kCLOCK_Pfd0:
1234 freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT);
1235 break;
1236
1237 case kCLOCK_Pfd1:
1238 freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT);
1239 break;
1240
1241 case kCLOCK_Pfd2:
1242 freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT);
1243 break;
1244
1245 case kCLOCK_Pfd3:
1246 freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT);
1247 break;
1248
1249 default:
1250 freq = 0U;
1251 break;
1252 }
1253 freq *= 18U;
1254
1255 return freq;
1256}
1257
1258/*!
1259 * brief Get current USB1 PLL PFD output frequency.
1260 *
1261 * This function get current output frequency of specific USB1 PLL PFD
1262 *
1263 * param pfd pfd name to get frequency.
1264 * return The PFD output frequency in hertz.
1265 */
1266uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
1267{
1268 uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
1269
1270 switch (pfd)
1271 {
1272 case kCLOCK_Pfd0:
1273 freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT);
1274 break;
1275
1276 case kCLOCK_Pfd1:
1277 freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT);
1278 break;
1279
1280 case kCLOCK_Pfd2:
1281 freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT);
1282 break;
1283
1284 case kCLOCK_Pfd3:
1285 freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT);
1286 break;
1287
1288 default:
1289 freq = 0U;
1290 break;
1291 }
1292 freq *= 18U;
1293
1294 return freq;
1295}
1296
1297/*! brief Enable USB HS PHY PLL clock.
1298 *
1299 * This function enables the internal 480MHz USB PHY PLL clock.
1300 *
1301 * param src USB HS PHY PLL clock source.
1302 * param freq The frequency specified by src.
1303 * retval true The clock is set successfully.
1304 * retval false The clock source is invalid to get proper USB HS clock.
1305 */
1306bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
1307{
1308 const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
1309 CLOCK_InitUsb2Pll(&g_ccmConfigUsbPll);
1310 USBPHY2->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
1311 USBPHY2->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
1312
1313 USBPHY2->PWD = 0;
1314 USBPHY2->CTRL |= USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK | USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
1315 USBPHY_CTRL_ENUTMILEVEL2_MASK | USBPHY_CTRL_ENUTMILEVEL3_MASK;
1316
1317 return true;
1318}
1319
1320/*! brief Disable USB HS PHY PLL clock.
1321 *
1322 * This function disables USB HS PHY PLL clock.
1323 */
1324void CLOCK_DisableUsbhs1PhyPllClock(void)
1325{
1326 CCM_ANALOG->PLL_USB2 &= ~CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK;
1327 USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
1328}
1329
1330/*!
1331 * brief Set the clock source and the divider of the clock output1.
1332 *
1333 * param selection The clock source to be output, please refer to clock_output1_selection_t.
1334 * param divider The divider of the output clock signal, please refer to clock_output_divider_t.
1335 */
1336void CLOCK_SetClockOutput1(clock_output1_selection_t selection, clock_output_divider_t divider)
1337{
1338 uint32_t tmp32;
1339
1340 tmp32 = CCM->CCOSR;
1341 if (selection == kCLOCK_DisableClockOutput1)
1342 {
1343 tmp32 &= ~CCM_CCOSR_CLKO1_EN_MASK;
1344 }
1345 else
1346 {
1347 tmp32 |= CCM_CCOSR_CLKO1_EN_MASK;
1348 tmp32 &= ~(CCM_CCOSR_CLKO1_SEL_MASK | CCM_CCOSR_CLKO1_DIV_MASK);
1349 tmp32 |= CCM_CCOSR_CLKO1_SEL(selection) | CCM_CCOSR_CLKO1_DIV(divider);
1350 }
1351 CCM->CCOSR = tmp32;
1352}
1353
1354/*!
1355 * brief Set the clock source and the divider of the clock output2.
1356 *
1357 * param selection The clock source to be output, please refer to clock_output2_selection_t.
1358 * param divider The divider of the output clock signal, please refer to clock_output_divider_t.
1359 */
1360void CLOCK_SetClockOutput2(clock_output2_selection_t selection, clock_output_divider_t divider)
1361{
1362 uint32_t tmp32;
1363
1364 tmp32 = CCM->CCOSR;
1365 if (selection == kCLOCK_DisableClockOutput2)
1366 {
1367 tmp32 &= CCM_CCOSR_CLKO2_EN_MASK;
1368 }
1369 else
1370 {
1371 tmp32 |= CCM_CCOSR_CLKO2_EN_MASK;
1372 tmp32 &= ~(CCM_CCOSR_CLKO2_SEL_MASK | CCM_CCOSR_CLKO2_DIV_MASK);
1373 tmp32 |= CCM_CCOSR_CLKO2_SEL(selection) | CCM_CCOSR_CLKO2_DIV(divider);
1374 }
1375
1376 CCM->CCOSR = tmp32;
1377}
1378
1379/*!
1380 * brief Get the frequency of clock output1 clock signal.
1381 *
1382 * return The frequency of clock output1 clock signal.
1383 */
1384uint32_t CLOCK_GetClockOutCLKO1Freq(void)
1385{
1386 uint32_t freq = 0U;
1387 uint32_t tmp32;
1388
1389 tmp32 = CCM->CCOSR;
1390
1391 if ((tmp32 & CCM_CCOSR_CLKO1_EN_MASK) != 0UL)
1392 {
1393 switch ((tmp32 & CCM_CCOSR_CLKO1_SEL_MASK) >> CCM_CCOSR_CLKO1_SEL_SHIFT)
1394 {
1395 case (uint32_t)kCLOCK_OutputPllUsb1:
1396 freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 2U;
1397 break;
1398 case (uint32_t)kCLOCK_OutputPllSys:
1399 freq = CLOCK_GetPllFreq(kCLOCK_PllSys) / 2U;
1400 break;
1401 case (uint32_t)kCLOCK_OutputPllVideo:
1402 freq = CLOCK_GetPllFreq(kCLOCK_PllVideo) / 2U;
1403 break;
1404 case (uint32_t)kCLOCK_OutputSemcClk:
1405 freq = CLOCK_GetSemcFreq();
1406 break;
1407 case (uint32_t)kCLOCK_OutputLcdifPixClk:
1408 freq = CLOCK_GetClockRootFreq(kCLOCK_LcdifClkRoot);
1409 break;
1410 case (uint32_t)kCLOCK_OutputAhbClk:
1411 freq = CLOCK_GetAhbFreq();
1412 break;
1413 case (uint32_t)kCLOCK_OutputIpgClk:
1414 freq = CLOCK_GetIpgFreq();
1415 break;
1416 case (uint32_t)kCLOCK_OutputPerClk:
1417 freq = CLOCK_GetPerClkFreq();
1418 break;
1419 case (uint32_t)kCLOCK_OutputCkilSyncClk:
1420 freq = CLOCK_GetRtcFreq();
1421 break;
1422 case (uint32_t)kCLOCK_OutputPll4MainClk:
1423 freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
1424 break;
1425 default:
1426 /* This branch should never be hit. */
1427 break;
1428 }
1429
1430 freq /= (((tmp32 & CCM_CCOSR_CLKO1_DIV_MASK) >> CCM_CCOSR_CLKO1_DIV_SHIFT) + 1U);
1431 }
1432 else
1433 {
1434 freq = 0UL;
1435 }
1436
1437 return freq;
1438}
1439
1440/*!
1441 * brief Get the frequency of clock output2 clock signal.
1442 *
1443 * return The frequency of clock output2 clock signal.
1444 */
1445uint32_t CLOCK_GetClockOutClkO2Freq(void)
1446{
1447 uint32_t freq = 0U;
1448 uint32_t tmp32;
1449
1450 tmp32 = CCM->CCOSR;
1451
1452 if ((tmp32 & CCM_CCOSR_CLKO2_EN_MASK) != 0UL)
1453 {
1454 switch ((tmp32 & CCM_CCOSR_CLKO2_SEL_MASK) >> CCM_CCOSR_CLKO2_SEL_SHIFT)
1455 {
1456 case (uint32_t)kCLOCK_OutputUsdhc1Clk:
1457 freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc1ClkRoot);
1458 break;
1459 case (uint32_t)kCLOCK_OutputLpi2cClk:
1460 freq = CLOCK_GetClockRootFreq(kCLOCK_Lpi2cClkRoot);
1461 break;
1462 case (uint32_t)kCLOCK_OutputCsiClk:
1463 freq = CLOCK_GetClockRootFreq(kCLOCK_CsiClkRoot);
1464 break;
1465 case (uint32_t)kCLOCK_OutputOscClk:
1466 freq = CLOCK_GetOscFreq();
1467 break;
1468 case (uint32_t)kCLOCK_OutputUsdhc2Clk:
1469 freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc2ClkRoot);
1470 break;
1471 case (uint32_t)kCLOCK_OutputSai1Clk:
1472 freq = CLOCK_GetClockRootFreq(kCLOCK_Sai1ClkRoot);
1473 break;
1474 case (uint32_t)kCLOCK_OutputSai2Clk:
1475 freq = CLOCK_GetClockRootFreq(kCLOCK_Sai2ClkRoot);
1476 break;
1477 case (uint32_t)kCLOCK_OutputSai3Clk:
1478 freq = CLOCK_GetClockRootFreq(kCLOCK_Sai3ClkRoot);
1479 break;
1480 case (uint32_t)kCLOCK_OutputCanClk:
1481 freq = CLOCK_GetClockRootFreq(kCLOCK_CanClkRoot);
1482 break;
1483 case (uint32_t)kCLOCK_OutputFlexspiClk:
1484 freq = CLOCK_GetClockRootFreq(kCLOCK_FlexspiClkRoot);
1485 break;
1486 case (uint32_t)kCLOCK_OutputUartClk:
1487 freq = CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot);
1488 break;
1489 case (uint32_t)kCLOCK_OutputSpdif0Clk:
1490 freq = CLOCK_GetClockRootFreq(kCLOCK_SpdifClkRoot);
1491 break;
1492 default:
1493 /* This branch should never be hit. */
1494 break;
1495 }
1496
1497 freq /= (((tmp32 & CCM_CCOSR_CLKO2_DIV_MASK) >> CCM_CCOSR_CLKO2_DIV_SHIFT) + 1U);
1498 }
1499 else
1500 {
1501 freq = 0UL;
1502 }
1503
1504 return freq;
1505}